Analytical Solutions for the Static Instability of Micro/Nano Mirrors Under the Combined Effect of Capillary Force and Casimir Force

Author(s):  
Hamid Moeenfard ◽  
Ali Darvishian ◽  
Mohammad Taghi Ahmadian

This paper deals with the problem of static instability of Micro/Nano mirrors under the combined effect of capillary force and Casimir force. At the First the governing equations of the statical behavior of Micro/Nano mirrors under the combined effect of capillary force and casimir force is obtained. The dependency of the critical tilting angle on the physical and geometrical parameters of the nano/micromirror and its supporting torsional beams is investigated. It is found that existence of casimir force can considerably reduce the stability limits of nano/micromirror. It is also found that rotation angle of the mirror due to capillary force highly depends on the casimir force applied to the mirror. Finally analytical tool Homotopy Perturbation Method (HPM) is utilized for prediction of the mirror’s behaviour under combined capillary and casimir forces. It is observed that a sixth order perturbation approximation accurately predicts the rotation angle and stability limits of the mirror. Results of this paper can be used for successful fabrication of nano/micromirrors using wet etching process where capillary force plays a major role in the system.

Author(s):  
Ali Darvishian ◽  
Hamid Moeenfard ◽  
Hasan Zohoor ◽  
Mohammad Taghi Ahmadian

The current paper deals with the problem of static instability of Micro/Nano mirrors under the combined effect of capillary force and van der Waals force. First the governing equations of the statical behavior of Micro/Nano mirrors under the combined effect of capillary force and casimir force is obtained using the newtons first law of motion. The dependence of the critical tilting angle on the physical and geometrical parameters of the nano/micromirror and its supporting torsional beams is investigated. It is found that existence of vdW torque can considerably reduce the stability limits of the nano/micromirror. It is also found that rotation angle of the mirror due to capillary force highly depends on the vdW toque applied to the mirror. Finally analytical tool Homotopy Perturbation Mehtod (HPM) is utilized for prediction of the nano/micromirror behaviour under combined capillary and vdW force. It is observed that a sixth order perturbation approximation accurately predicts the rotation angle and stability limits of the mirror. Results of this paper can be used for successful fabrication of nano/micromirrors using wet etching process where capillary force plays a major role in the system.


2012 ◽  
Vol 26 (07) ◽  
pp. 1250056 ◽  
Author(s):  
HAMID MOEENFARD ◽  
ALI DARVISHIAN ◽  
HASSAN ZOHOOR ◽  
MOHAMMAD TAGHI AHMADIAN

In the current paper, the effect of van der Waals (vdW) force on the static behavior and pull-in characteristics of nano/micromirrors under capillary force is investigated. At first, the dimensionless equation governing the static behavior of nano/micromirrors is obtained. The dependence of the critical tilting angle on the physical and geometrical parameters of the nano/micromirror and its supporting torsional beams is investigated. It is found that the existence of vdW force can considerably reduce the stability limits of the nano/micromirror. It is also found that rotation angle of the mirror due to capillary force highly depends on the vdW force applied to the mirror. Finally, analytical tool Homotopy Perturbation Method (HPM) is utilized for prediction of the nano/micromirror behavior under combined capillary and vdW force. It is observed that a sixth order perturbation approximation accurately predicts the rotation angle and stability limits of the mirror. The results of this paper can be used for successful fabrication of nano/micromirrors using wet etching release process where capillary force plays a major role in the system.


Author(s):  
Hamid Moeenfard ◽  
Ali Darvishian ◽  
Mohammad Taghi Ahmadian

The coupling effect between torsion and bending in nano/micromirrors under the combined effect of capillary force and van der Waals (vdW) force is presented in this paper. At the first, the dimensionless equations governing the statical behavior of the nano/micromirror are obtained using the minimum total potential energy principle. Then the equations governing the pull-in state of the mirror are obtained using the implicit function theorem. The related results show that neglecting bending effect can lead to considerable overestimation in predicting the pull-in limits of the nano/micromirror under combined vdW and capillary forces. It is observed that vdW force reduces the pull-in angle and pull-in deflection of the supporting torsion beams of the mirror. The static behavior of the nano/micromirror under capillary and vdW loading is also studied and the results reveal that the static behavior of the nano/micromirror under capillary and vdW forces highly depends on the bending of the torsion beams. The results of this paper can be used for a safe and stable design and fabrication of mirrors using the wet etching process, where the gap between the mirror and the underneath substrate is sufficiently small and as a results both capillary and vdW forces have significant role in the stability of the system.


2013 ◽  
Vol 27 (06) ◽  
pp. 1350008 ◽  
Author(s):  
HAMID MOEENFARD ◽  
ALI DARVISHIAN ◽  
MOHAMMAD TAGHI AHMADIAN

This paper studies the effect of Casimir force on the pull-in instability of electrostatically actuated torsional nano/micro actuators. Dependence of the actuator's pull-in angle and pull-in voltage on several design parameters are investigated and it is found that Casimir force can considerably reduce the stability limits of the torsional actuators. Nonlinear equilibrium equation is solved numerically and analytically using straight forward perturbation expansion method. It is observed that a fourth-order perturbation approximation can precisely model the behavior of a torsional actuator. The results of this paper can be used for safe and stable design of torsional nano/micro actuators.


2020 ◽  
Vol 22 (4) ◽  
pp. 1061-1076
Author(s):  
Wafa Bensmain ◽  
Mohammed Benlebna ◽  
Boualem Serier ◽  
Bel Abbes ◽  
Bachir Bouiadjra

AbstractOsseointegration is a fundamental phenomenon of dental implantology. It ensures the stability, the safety and the durability of dental implants and predictable clinical success in long-term. The geometric form of the implant is a defining parameter of osseointegration and implant-bone charge transfer. This is the essential constitutes of this study. In fact, we demonstrate using the finite elements method with tridimensional numerical computations, that the geometrical parameters of the implant conditionate the level and the repartition of the stresses, induced in the cortical bone and the spongy bone during the masticatory process, simulated here by dynamic charging. The effect of several parameters [size and conicity of the implant neck, size and radius of curvature of the implant apex] and the shape of the implant corps on the biomechanical behavior of the bone. The latest was analyzed in terms of variation of the equivalent stress induced in the bone. The purpose of this analysis was the developing of an implant form allowing stress relaxation, during the mastication process, in the living tissue.


Author(s):  
Serge Reynaud ◽  
Astrid Lambrecht

The Casimir force is an effect of quantum vacuum field fluctuations, with applications in many domains of physics. The ideal expression obtained by Casimir, valid for perfect plane mirrors at zero temperature, has to be modified to take into account the effects of the optical properties of mirrors, thermal fluctuations, and geometry. After a general introduction to the Casimir force and a description of the current state of the art for Casimir force measurements and their comparison with theory, this chapter presents pedagogical treatments of the main features of the theory of Casimir forces for one-dimensional model systems and for mirrors in three-dimensional space.


1998 ◽  
Vol 1 (1) ◽  
pp. 23-39
Author(s):  
Carter J. Kerk ◽  
Don B. Chaffin ◽  
W. Monroe Keyserling

The stability constraints of a two-dimensional static human force exertion capability model (2DHFEC) were evaluated with subjects of varying anthropometry and strength capabilities performing manual exertions. The biomechanical model comprehensively estimated human force exertion capability under sagittally symmetric static conditions using constraints from three classes: stability, joint muscle strength, and coefficient of friction. Experimental results showed the concept of stability must be considered with joint muscle strength capability and coefficient of friction in predicting hand force exertion capability. Information was gained concerning foot modeling parameters as they affect whole-body stability. Findings indicated that stability limits should be placed approximately 37 % the ankle joint center to the posterior-most point of the foot and 130 % the distance from the ankle joint center to the maximal medial protuberance (the ball of the foot). 2DHFEC provided improvements over existing models, especially where horizontal push/pull forces create balance concerns.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 225
Author(s):  
Giuseppe Bimonte ◽  
Thorsten Emig

The principles of the electromagnetic fluctuation-induced phenomena such as Casimir forces are well understood. However, recent experimental advances require universal and efficient methods to compute these forces. While several approaches have been proposed in the literature, their connection is often not entirely clear, and some of them have been introduced as purely numerical techniques. Here we present a unifying approach for the Casimir force and free energy that builds on both the Maxwell stress tensor and path integral quantization. The result is presented in terms of either bulk or surface operators that describe corresponding current fluctuations. Our surface approach yields a novel formula for the Casimir free energy. The path integral is presented both within a Lagrange and Hamiltonian formulation yielding different surface operators and expressions for the free energy that are equivalent. We compare our approaches to previously developed numerical methods and the scattering approach. The practical application of our methods is exemplified by the derivation of the Lifshitz formula.


Author(s):  
Weidong Yang ◽  
Menglong Liu ◽  
Linwei Ying ◽  
Xi Wang

This paper demonstrated the coupled surface effects of thermal Casimir force and squeeze film damping (SFD) on size-dependent electromechanical stability and bifurcation of torsion micromirror actuator. The governing equations of micromirror system are derived, and the pull-in voltage and critical tilting angle are obtained. Also, the twisting deformation of torsion nanobeam can be tuned by functionally graded carbon nanotubes reinforced composites (FG-CNTRC). A finite element analysis (FEA) model is established on the COMSOL Multiphysics platform, and the simulation of the effect of thermal Casimir force on pull-in instability is utilized to verify the present analytical model. The results indicate that the numerical results well agree with the theoretical results in this work and experimental data in the literature. Further, the influences of volume fraction and geometrical distribution of CNTs, thermal Casimir force, nonlocal parameter, and squeeze film damping on electrically actuated instability and free-standing behavior are detailedly discussed. Besides, the evolution of equilibrium states of micromirror system is investigated, and bifurcation diagrams and phase portraits including the periodic, homoclinic, and heteroclinic orbits are described as well. The results demonstrated that the amplitude of the tilting angle for FGX-CNTRC type micromirror attenuates slower than for FGO-CNTRC type, and the increment of CNTs volume ratio slows down the attenuation due to the stiffening effect. When considering squeeze film damping, the stable center point evolves into one focus point with homoclinic orbits, and the dynamic system maintains two unstable saddle points with the heteroclinic orbits due to the effect of thermal Casimir force.


Sign in / Sign up

Export Citation Format

Share Document