Parametric Optimization of Dental Implants

2020 ◽  
Vol 22 (4) ◽  
pp. 1061-1076
Author(s):  
Wafa Bensmain ◽  
Mohammed Benlebna ◽  
Boualem Serier ◽  
Bel Abbes ◽  
Bachir Bouiadjra

AbstractOsseointegration is a fundamental phenomenon of dental implantology. It ensures the stability, the safety and the durability of dental implants and predictable clinical success in long-term. The geometric form of the implant is a defining parameter of osseointegration and implant-bone charge transfer. This is the essential constitutes of this study. In fact, we demonstrate using the finite elements method with tridimensional numerical computations, that the geometrical parameters of the implant conditionate the level and the repartition of the stresses, induced in the cortical bone and the spongy bone during the masticatory process, simulated here by dynamic charging. The effect of several parameters [size and conicity of the implant neck, size and radius of curvature of the implant apex] and the shape of the implant corps on the biomechanical behavior of the bone. The latest was analyzed in terms of variation of the equivalent stress induced in the bone. The purpose of this analysis was the developing of an implant form allowing stress relaxation, during the mastication process, in the living tissue.

2016 ◽  
Vol 83 (12) ◽  
Author(s):  
Akanksha Garg ◽  
Craig E. Maloney

We perform atomistic simulations of nanoindentation on Lennard–Jones 2D hexagonal crystals. In this work, we find a new spatially extended buckling-like mode of instability, which competes with the previously known instability governed by dislocation-dipole nucleation. The geometrical parameters governing these instabilities are the lattice constant, a, the radius of curvature of the indenter, R, and the thickness of the indenter layer, Ly. Whereas dislocation nucleation is a saddle-node bifurcation governed by R/a, the buckling-like instability is a pitchfork bifurcation (like classical Euler buckling) governed by R/Ly. The two modes of instability exhibit strikingly different behaviors after the onset of instability. The dislocation nucleation mode results in a stable final configuration containing a surface step and a stable dislocation at some depth beneath the surface, while the buckling modes are always followed immediately by subsequent nucleation of many dislocation dipoles. We show that this subsequent dislocation nucleation is also observed immediately after buckling in free standing rods, but only for rods which are of sufficiently wide aspect ratio, while thinner rods exhibit stable buckling followed only later by dislocation nucleation in the buckled state. Finally, we study the utility of several recently proposed local and quasi-local stability criteria in detecting the buckling mode. We find that the so-called Λ criterion, based on the stability of a representative homogeneously deformed lattice, is surprisingly useful in detecting the transition from dislocation-type instability to buckling-type instability.


Biology ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 12
Author(s):  
David Chavarri-Prado ◽  
Aritza Brizuela-Velasco ◽  
Ángel Álvarez-Arenal ◽  
Markel Dieguez-Pereira ◽  
Esteban Pérez-Pevida ◽  
...  

Objectives: To determine the effect of mechanical loading of bone on the stability and histomorphometric variables of the osseointegration of dental implants using an experimental test in an animal model. Materials and Methods: A total of 4 human implants were placed in both tibiae of 10 New Zealand rabbits (n = 40). A 6-week osseointegration was considered, and the rabbits were randomly assigned to two groups: Group A (Test group) included 5 rabbits that ran on a treadmill for 20 min daily during the osseointegration period; Group B (Controls) included the other 5 that were housed conventionally. The monitored variables were related to the primary and secondary stability of the dental implants (implant stability quotient—ISQ), vertical bone growth, bone to implant contact (BIC), area of regenerated bone and the percentage of immature matrix. Results: The results of the study show a greater vertical bone growth (Group A 1.26 ± 0.48 mm, Group B 0.32 ± 0.47 mm, p < 0.001), higher ISQ values (Group A 11.25 ± 6.10 ISQ, 15.73%; Group B 5.80 ± 5.97 ISQ, 7.99%, p = 0.006) and a higher BIC (Group A 19.37%, Group B 23.60%, p = 0.0058) for implants in the test group, with statistically significant differences. A higher percentage of immature bone matrix was observed for implants in the control group (20.68 ± 9.53) than those in the test group (15.38 ± 8.84) (p = 0.108). A larger area of regenerated bone was also observed for the test implants (Group A 280.50 ± 125.40 mm2, Group B 228.00 ± 141.40 mm2), but it was not statistically significant (p = 0.121). Conclusions: The mechanical loading of bone improves the stability and the histomorphometric variables of the osseointegration of dental implants.


2021 ◽  
Author(s):  
Tianying Wang ◽  
Yanjun Zhou ◽  
Honglin Tang ◽  
Shihua Zhang ◽  
Haiqing Tian

Abstract The JCSM concept (short for Jackup Combined Semisubmersible Multifunction Platform) is a new type of semisubmersible platform presented by the first author, which overcomes the shortcomings of the available semisubmersible platforms, and combines the advantages of the traditional semisubmersible platform, the Jackup platform and the new FPSO concept - IQFP. Due to the complicated interaction between stability and hydrodynamic performance, it is necessary to explore the effect of geometrical parameters of the main body on the stability and hydrodynamic performance in order to obtain the optimal design plan of a JCSM platform. Firstly, the structure components and innovations of the JCSM were briefly reviewed in order to facilitate readers to understand its full picture. Then, six independent geometric parameters were selected by carefully studying the shape characteristics of the initial design plan of a JCSM study case. Furthermore, the stability heights and motion responses of various floating bodies of the JCSM case with different geometric parameters in wave were calculated using boundary element method based on potential flow theory. Lastly, effect of the shape parameters on stability and hydrodynamic performance of the JCSM was qualitatively evaluated. The research would shed lights on the shape design of the JCSM main body.


2016 ◽  
Vol 835 ◽  
pp. 97-102
Author(s):  
Liliana Porojan ◽  
Florin Topală ◽  
Sorin Porojan

Zirconia is an extremely successful material for prosthetic restorations, offering attractive mechanical and optical properties. It offers several advantages for posterior restorations because it can withstand physiological posterior forces. The aim of the study was to achieve the influence of zirconia framework thickness on the mechanical behavior of all-ceramic crowns using numerical simulation. For the study a premolar was chosen in order to simulate the mechanical behavior in the components of all-ceramic crowns and teeth structures regarding to the zirconia framework thickness. Maximal Von Mises equivalent stress values were recorded in teeth and restorations. Due to the registered maximal stress values it can be concluded that it is indicated to achieve frameworks of at least 0.5 mm thickness in the premolar area. Regarding stress distribution concentration were observed in the veneer around the contact areas with the antagonists, in the framework under the functional cusp and in the oral part overall and in dentin around and under the marginal line, also oral. The biomechanical behavior of all ceramic crowns under static loads can be investigated by the finite element method.


2008 ◽  
Vol 136 (Suppl. 2) ◽  
pp. 123-128 ◽  
Author(s):  
Vitomir Konstantinovic

The loss of teeth, which is a frequent occurrence, is followed by functional, aesthetic and psychological problems. Dentistry has very important role to enable adequate rehabilitation as soon as possible. Removable dentures or fixed bridges on dental implants are most modern and best mode of rehabilitation for the patient. The advantages of implant anchored tooth restorations compared with classical procedures are multiple. Among others, there is prevention of bone resorption, correction of the stability and retention of the restorations, elimination of the preparation of adjacent teeth, as well as the improvement of the patient?s psychological status. In order to achieve successful implantation, the following principles have to be taken into consideration: indications and contraindications; biocompatibility; osseointegration; the protocol of implant loading and the assessment of implant success. One of the biggest challenges is implantology under unfavourable anatomical conditions, as well as the implantation on irradiated tissue. However, these conditions are not absolute contraindications for implantation. The adequate choice of adequate implantological system enables successful implantation under different conditions.


2021 ◽  
Vol 15 (4) ◽  
pp. 226-231
Author(s):  
Gulsum Sayin Ozel ◽  
Ozgur Inan ◽  
Asli Secilmis Acar ◽  
Gamze Alniacik Iyidogan ◽  
Dogan Dolanmaz ◽  
...  

Background. The surface properties of implants are effective factors for increasing the osseointegration and activity of osteoprogenitor cells. This study compared the stability of dental implants with sandblasted and acid-etched (SLA) and modified surfaces (SLActive) using the resonance frequency analysis (RFA). Methods. In a split-mouth design, 50 dental implants with either SLA surface properties (n=25) or modified (SLActive) surface properties (n=25) were placed in the mandibles of 12 patients with a bilateral posterior edentulous area. Implant stability was measured using RFA (Osstell) at implant placement time and every week for 1, 2, and 3 months before the conventional loading time. Results. One week following the implantation, implant stability increased from 70 to 77.67 for SLA and from 71.67 to 79 for SLActive (P<0.05). Stability improved each week except in the 4th week in SLActive surface measurements. No significant differences were observed between the groups at 2 and 3 months (P>0.05). Conclusions. For both implant surfaces, increased stability was observed over time, with no significant differences between the groups.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
J. S. Vieira ◽  
E. M. Brandão-Filho ◽  
F. R. Deliberador ◽  
J. C. Zielak ◽  
A. F. Giovanini ◽  
...  

Fresh frozen allograft bone is routinely used in orthopedic surgery for the reconstruction of large bone defects, and its use in oral and maxillofacial surgery is increasing. The purpose of this case was to demonstrate the installation of dental implants and the use of fresh frozen bone for reconstruction of anterior maxilla in the same surgery. This case report presents the insertion of dental implants followed immediately by a placement of fresh frozen allograft in block and particle for a reconstruction of atrophic anterior maxillary in the same surgery. Ten months subsequent to this procedure, provisional fixed prosthesis was installed on the implants. Four months later (postoperative month 14), the final fixed prosthesis was installed and the clinical success was observed. The insertion of dental implants followed immediately by a placement of fresh frozen allograft is a safe and efficient process that results in the successful return of dental function and aesthetic rehabilitation for the patient.


2018 ◽  
Vol 63 (6) ◽  
pp. 699-708 ◽  
Author(s):  
Apoorva Dwivedi ◽  
Gargi Khanna

Abstract The present work attempts to enhance the sensitivity of a folded beam microelectromechanical systems (MEMS) capacitive accelerometer by optimising the device geometry. The accelerometer is intended to serve as a microphone in the fully implantable hearing application which can be surgically implanted in the middle ear bone structure. For the efficient design of the accelerometer as a fully implantable biomedical device, the design parameters such as size, weight and resonant frequency have been considered. The geometrical parameters are varied to obtain the optimum sensitivity considering the design constraints and the stability of the structure. The optimised design is simulated and verified using COMSOL MULTIPHYSICS 4.2. The stability of the device is ensured using eigenfrequency analysis. Optimised results of the device geometry are presented and discussed. The accelerometer has a sensing area of 1 mm2 and attains a nominal capacitance of 5.3 pF and an optimum sensitivity of 6.89 fF.


Sign in / Sign up

Export Citation Format

Share Document