THERMOELECTRICITY OF Ca2.9Ce0.1Co4O9+δ BASED NANOCOMPOSITES WITH Cu2O NANOINCLUSION

2013 ◽  
Vol 27 (22) ◽  
pp. 1350108
Author(s):  
FANG JU LI

Ca 2.9 Ce 0.1 Co 4 O 9+δ/x wt% Cu 2 O nanocomposites have been studied as the thermoelectric materials for energy harvesting purpose. We evaluate the thermoelectric properties of the composites through temperature dependent thermopower, thermal conductivity and resistivity measurements. It is found that the introduction of Cu 2 O nanoparticles serves as phonon scattering centers, which reduces the thermal conductivity. The nanoinclusions contribute to a remarkable increase in electrical resistivity due to enhanced carrier scattering. As a result, Cu 2 O nanoinclusions do not succeed in improving ZT of Ca 2.9 Ce 0.1 Co 4 O 9+δ material.

2011 ◽  
Vol 1314 ◽  
Author(s):  
Takashi Itoh ◽  
Masashi Tachikawa

ABSTRACTCobalt triantimonide compounds are well known as materials with good thermoelectric properties over temperature range of 550-900 K. For further improving thermoelectric performance, reduction of thermal conductivity is required. In this study, we attempted to disperse carbon nanotubes (CNTs) homogeneously into the n-type CoSb3 compound for lowering lattice thermal conductivity by the phonon scattering. Powders of Co, Ni, Sb and Te were blended with molar ratios of n-type Co0.92Ni0.08Sb2.96Te0.04 compound, and the compound was synthesized through a pulse discharge sintering (PDS) process. After coarsely grinding the synthesized compound, CNTs were mixed with the compound powder at different mass% (0, 0.01, 0.05 and 0.1 mass%). Then, the mixture was mechanically ground with a planetary ball milling equipment. The ground composite powder was compacted and sintered by PDS. Thermoelectric properties (Seebeck coefficient, electrical resistivity and thermal conductivity) of the sintered samples were measured. It was confirmed that the fibrous CNTs existed homogeneously in the compound matrix. The absolute value of Seebeck coefficient slightly decreased with increase of CNT content. The minimum thermal conductivity was obtained at addition of 0.01mass%CNT, and the electrical resistivity was a little increased with CNT content. The maximum ZT of 0.98 was achieved at 853 K in the 0.01mass%CNT-added sample.


2006 ◽  
Vol 510-511 ◽  
pp. 1070-1073 ◽  
Author(s):  
Il Ho Kim ◽  
J.B. Park ◽  
Tae Whan Hong ◽  
Soon Chul Ur ◽  
Young Geun Lee ◽  
...  

Zn4Sb3 was successfully produced by a hot pressing technique, and its thermoelectric properties were investigated in the temperature range from 4K to 300K. The Seebeck coefficient, electrical conductivity, thermal conductivity, and thermoelectric figure of merit showed a discontinuity in variation at 242K, indicating the α-Zn4Sb3 to β-Zn4Sb3 phase transformation. Lattice thermal conductivity was found to be dominant in the total thermal conductivity of Zn4Sb3. Therefore, it is expected that thermoelectric properties can be improved by reducing the lattice thermal conductivity inducing phonon scattering centers.


1997 ◽  
Vol 478 ◽  
Author(s):  
M.L. Wilson ◽  
S. Legault ◽  
R.M. Stroud ◽  
T.M. Tritt

AbstractWe report the measurement of the thermal conductivity, electrical resistivity, and thermoelectric power on two quasicrystalline compounds, A170Pd20Re10 and A162.5Cu25Fe12.5. These materials are found to posses a thermal conductivity of order 1 W/m K, while retaining their semimetallic conductivity. These features coupled with moderately large thermopowers, up to 55 μV/K, imply that the general class of quasicrystalline compounds warrants careful investigation for their potential as new thermoelectric materials.


1991 ◽  
Vol 234 ◽  
Author(s):  
John S. Beaty ◽  
Jonathan L Rolfe ◽  
Jan W. Vandersande

ABSTRACTThe objective of the work reported here is to reduce the thermal conductivity of thermoelectric materials in order to improve their figureof- merit and conversion efficiency. Theory predicts that the addition of ultra-fine, inert, phonon-scattering centers to thermoelectric materials will reduce their thermal conductivity [1]. To investigate this prediction, ultra-fine particulates (20Å to 120Å) of silicon nitride have been added to boron doped, p-type, 80/20 SiGe. All of the SiGe samples produced from ultra-fine powder have lower thermal conductivities, than that for standard SiGe, but high temperature heat treatment increases the thermal conductivity back to the value for standard SiGe. However, the SiGe samples with silicon nitride, inert, phonon-scattering centers, retained the lower thermal conductivity after several heat treatments. A reduction of approximately 25% in thermal conductivity has been achieved in these samples.


2007 ◽  
Vol 22 (1) ◽  
pp. 249-253 ◽  
Author(s):  
Takashi Itoh ◽  
Kenta Ishikawa ◽  
Akira Okada

Thermoelectric power generation is a promising method for harnessing waste thermal energy, especially in the temperature range between 500 and 800 K. It is necessary to improve the performance of thermoelectric materials for the realization of the power generation. Dispersion of nanoparticles such as fullerenes is expected to induce phonon scattering that decreases thermal conductivity of materials, and application to thermoelectric materials may lead to improved properties. In the present study, then-type Co0.92Ni0.08Sb2.96Te0.04thermoelectric compound was synthesized, and the thermoelectric properties were evaluated. Furthermore, the fullerene particles were sufficiently mixed with the thermoelectric compound powder by the mechanical grinding method, and influences of the fullerene additions to the compound were investigated. The dispersion of fullerene particles in then-type Co0.92Ni0.08Sb2.96Te0.04compound was conducted through the planetary ball milling method to disentangle agglomerates of the fullerene and to disperse the particles in the thermoelectric compound matrix. The thermal conductivity decreased with an increase in fullerene content, and the maximum in dimensionless figure of meritZTwas 0.62 at 800 K for 1 mass% fullerene addition. This was 28% higher than that of fullerene-free sample.


2005 ◽  
Vol 20 (11) ◽  
pp. 3082-3087 ◽  
Author(s):  
M. Shikano ◽  
R. Funahashi ◽  
M. Kitawaki

Agglomerates of aligned crystals of CaxCo2O4 with a layer of CoO2 were grown using a chloride flux technique, and their thermoelectric properties in air were determined. The agglomerates take the form of a very thin flakelike cluster of crystals with a typical size of almost 3 × 2 × 0.07 mm. The values of thermoelectric power along the ab-plane are larger than 200 μV K−1 at temperatures above 873 K and reach almost 300 μV K−1 at 973 K. The temperature dependence of the electrical resistivity along the ab-plane shows bends around 450 and 825 K, and the ln ρab−T−1 curve followed an Arrhenius-type behavior below 450 K. Temperature dependence of thermal conductivity indicated that stacking faults along the c axis induce phonon scattering like that in a misfit-layered structure. The effect of the CoO2 layer on thermoelectric performance is discussed in comparison with related compounds.


2011 ◽  
Vol 312-315 ◽  
pp. 223-228
Author(s):  
Il Ho Kim

Sn-filled and Fe-doped CoSb3 skutterudites were synthesized by encapsulated induction melting. A single δ-phase was obtained by subsequent annealing, as confirmed by X-ray diffraction. The as-solidified ingot consisted of mixed phases of -CoSb, -CoSb2, δ-CoSb3 and elemental Sb. The phases could be transformed by annealing, and the phases of the as-solidified ingot annealed at 773 K for 24 h transformed to δ-CoSb3. The temperature dependence of the Seebeck coefficient, electrical resistivity and thermal conductivity were examined from 300 K to 700 K. The positive Seebeck coefficient confirmed p-type conduction. The electrical resistivity increased with increasing temperature, which showed that the SnzCo3FeSb12 skutterudite is highly degenerate. The thermal conductivity was reduced by Sn-filling because the filler atoms acted as phonon scattering centers in the skutterudite lattice. The thermoelectric figure of merit was enhanced by Sn filling and its optimum composition was considered to be Sn0.3Co3FeSb12.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Degang Zhao ◽  
Jiai Ning ◽  
Shuyu Li ◽  
Min Zuo

Nanosized C60powder was sufficiently incorporated with Cu2GeSe3powder by ball milling and C60/Cu2GeSe3composites were prepared by spark plasma sintering. C60distributed uniformly in the form of clusters and the average size of cluster was lower than 1 μm. With the addition of C60increasing, the electrical resistivity and Seebeck coefficient of C60/Cu2GeSe3composites increased while the thermal conductivity decreased significantly which resulted from the phonon scattering by C60clusters locating on the grain boundaries of Cu2GeSe3matrix. The maximumZTof 0.20 was achieved at 700 K for 0.9% C60/Cu2GeSe3sample.


2019 ◽  
Vol 34 (02) ◽  
pp. 2050019 ◽  
Author(s):  
Y. Zhang ◽  
M. M. Fan ◽  
C. C. Ruan ◽  
Y. W. Zhang ◽  
X.-J. Li ◽  
...  

[Formula: see text] ceramic samples have a structure similar to phonon glass electronic crystals, and their thermoelectric properties can be effectively adjusted through repeated grinding and sintering. The results show that multi-sintering can make their grain refined and increase their grain boundary, which will effectively increase density and phonon scattering. Finally, multi-sintering can reduce the resistivity and thermal conductivity, thus obviously improve thermoelectric figure of merit [Formula: see text] of [Formula: see text]. The optimum [Formula: see text] value of 0.26 is achieved at 923 K by the third sintered sample.


2009 ◽  
Vol 24 (2) ◽  
pp. 430-435 ◽  
Author(s):  
D. Li ◽  
H.H. Hng ◽  
J. Ma ◽  
X.Y. Qin

The thermoelectric properties of Nb-doped Zn4Sb3 compounds, (Zn1–xNbx)4Sb3 (x = 0, 0.005, and 0.01), were investigated at temperatures ranging from 300 to 685 K. The results showed that by substituting Zn with Nb, the thermal conductivities of all the Nb-doped compounds were lower than that of the pristine β-Zn4Sb3. Among the compounds studied, the lightly substituted (Zn0.995Nb0.005)4Sb3 compound exhibited the best thermoelectric performance due to the improvement in both its electrical resistivity and thermal conductivity. Its figure of merit, ZT, was greater than the undoped Zn4Sb3 compound for the temperature range investigated. In particular, the ZT of (Zn0.995Nb0.005)4Sb3 reached a value of 1.1 at 680 K, which was 69% greater than that of the undoped Zn4Sb3 obtained in this study.


Sign in / Sign up

Export Citation Format

Share Document