Influence of oxygen partial pressure on the metastable copper oxide thin films

2016 ◽  
Vol 30 (35) ◽  
pp. 1530012 ◽  
Author(s):  
Birol Geçici ◽  
Şadan Korkmaz ◽  
Soner Özen ◽  
Volkan Şenay ◽  
Suat Pat

Paramelaconite (Cu4O3) is a metastable copper oxide. Metastable copper oxide thin films were deposited on glass substrates by reactive RF magnetron sputtering in argon (Ar) and oxygen (O2) gas mixture atmospheres. Ar/O2 gas ratios in the sputtering ambient were chosen as 1/1 and 1/9. The surface and optical properties were determined by X-ray diffractometer (XRD), atomic force microscope (AFM) and UV-Vis spectrophotometer. The XRD patterns of the samples exhibited single strong diffraction peaks at 35.39[Formula: see text] and 35.49[Formula: see text], corresponding to the (202) peak of Cu4O3. The mean thickness values were measured as 100 nm and 80 nm for the films deposited at 1/1 and 1/9 Ar/O2 gas ratios, respectively. The samples showed low transmittance and high absorbance in the high frequency region.

2019 ◽  
Vol 11 (22) ◽  
pp. 64-71
Author(s):  
Rawaa A. Faris

     Copper oxide thin films were synthesized by using spray pyrolysis deposition technique, in the temperature around 400°C in atmosphere from alcoholic solutions. Copper (II) chloride as precursor and glass as a substrate. The textural and structural properties of the films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD). The average particle size determined from the AFM images ranged from 30 to 90 nm and the roughness average was equal to 9.3 nm. The XRD patterns revealed the formation of a polycrystalline hexagonal CuO. The absorption and transmission spectrum, band gap, film thickness was investigated. The films were tested as an optical limiter. The experiments were performed using Q-switched Nd:YAG laser at 532nm and 1064 nm at different intensities. Copper oxide thin films appear to be attractive candidates for optical limiting application and sensor application.


2021 ◽  
Vol 67 (3 May-Jun) ◽  
pp. 495
Author(s):  
M. A. Cruz Almazán ◽  
E. Vigueras Santiago ◽  
R. López ◽  
S. Hernández López ◽  
V. Hugo Castrejón Sánchez ◽  
...  

Copper oxide thin films deposited by sputtering are frequently formed by using metal copper targets in reactive atmospheres. In this report, paramelaconite (Cu4O3) thin films were deposited by non-reactive rf magnetron sputtering. The target used for sputtering was a copper oxide disk fabricated by oxidation of metal copper at 1000 °C for 24 h in airatmosphere. X-ray diffraction (XRD) results showed that the copper oxide target was mainly composed of cupric oxide (CuO) and cuprous oxide (Cu2O) crystals. Raman analyses suggested that the surface of the copper oxide disk is composed by a (CuO) layer. XRD measurements performed to the copper oxide thin films deposited by non-reactive rf magnetron sputtering showed that the film is composed of (Cu4O3) crystals. However,Raman measurements indicated that the Cu4O3 thin films are also composed by amorphous CuO and Cu2O.


2013 ◽  
Vol 594-595 ◽  
pp. 113-117 ◽  
Author(s):  
Dewi Suriyani Che Halin ◽  
Ibrahim Abu Talib ◽  
Abdul Razak Daud ◽  
Muhammad Azmi Abdul Hamid

Copper oxide films were prepared via sol-gel like spin coating starting from methanolic solutions of cupric chloride onto the TiO2 substrates. Films were obtained by spin coating under room conditions (temperature, 25-30 °C) and were subsequently annealed at different temperatures (200-400 °C) in oxidizing (air) and inert (N2) atmospheres. X-ray diffraction (XRD) patterns showed crystalline phases, which were observed as a function of the annealing conditions. The film composition resulted single or multi-phasic depending on both temperature and atmosphere. The grain size of film was measured using scanning electron microscopy (SEM) and the surface roughness of thin films was characterized by atomic force microscopy (AFM). The grain size of which was annealed in air at 300 °C was 30.39 nm with the surface roughness of 96.16 nm. The effects of annealing atmosphere on the structure and morphology of copper oxide thin films are reported.


2015 ◽  
Vol 1117 ◽  
pp. 139-142 ◽  
Author(s):  
Marius Dobromir ◽  
Radu Paul Apetrei ◽  
A.V. Rogachev ◽  
Dmitry L. Kovalenko ◽  
Dumitru Luca

Amorphous Nb-doped TiO2 thin films were deposited on (100) Si and glass substrates at room temperature by RF magnetron sputtering and a mosaic-type Nb2O5-TiO2 sputtering target. To adjust the amount of the niobium dopant in the film samples, appropriate numbers of Nb2O5 pellets were placed on the circular area of the magnetron target with intensive sputtering. By adjusting the discharge conditions and the number of niobium oxide pellets, films with dopant content varying between 0 and 16.2 at.% were prepared, as demonstrated by X-ray photoelectron spectroscopy data. The X-ray diffraction patterns of the as-deposited samples showed the lack of crystalline ordering in the samples. Surfaces roughness and energy band gap values increase with dopant concentration, as showed by atomic force microscopy and UV-Vis spectroscopy measurements.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Y. Bouachiba ◽  
A. Taabouche ◽  
A. Bouabellou ◽  
F. Hanini ◽  
C. Sedrati ◽  
...  

AbstractTiO2 thin films have been deposited on glass substrates with and without ZnO underlayer by sol-gel dip coating process. XRD patterns show the formation of anatase phase with the diffraction lines (1 0 1) and (2 0 0) in TiO2/glass sample. In TiO2/(ZnO/glass) sample, TiO2 is composed of anatase phase with the diffraction line (2 0 0) but the diffraction peaks of ZnO wurtzite are also well-defined. The determination of the refractive index and the thickness of the waveguiding layers has been performed by m-lines spectroscopy. The thickness of TiO2 thin films deduced by Rutheford Backscattering Geometry (RBS) agrees well with that obtained by m-lines spectroscopy. TiO2/glass sample exhibits one guided TE0 and TM0 polarized modes. In TiO2/(ZnO/glass) sample, only, TE0 single mode has been excited due to cutoff condition.


2013 ◽  
Vol 341-342 ◽  
pp. 149-152
Author(s):  
Guo Hua Wang ◽  
Niu Yi Sun ◽  
Juan Qin ◽  
Wei Min Shi ◽  
Lin Jun Wang

Half-Heusler compound YNiBi thin films have been prepared by direct current (DC) magnetron sputtering from an YNiBi target. The film structure and surface morphology of YNiBi thin films were analyzed with X-ray diffraction (XRD) and atomic force microscopy (AFM). The electrical properties of the films were studied by Hall measurements. XRD patterns show that the films prepared at lower sputtering pressure and higher growth temperature exhibit minimum full width at half maximum (FWHM) and maximum diffraction peaks which belong to the same family of crystal planes. Results of AFM reveal that the surface of a variety of fabricated YNiBi films is smooth and keeps good adhesion to the substrate. The increasing of substrate temperature and slightly lowering of sputtering pressure are in favor of reducing the root mean square roughness during magnetron sputtering process. The film with high crystallinity has an electrical conductivity of 938 S/cm and carrier concentration of 2.15×1021cm-3.


2016 ◽  
Vol 1133 ◽  
pp. 439-443
Author(s):  
Mohd Fauzee Nurfazliana ◽  
Sharul Ashikin Kamaruddin ◽  
Nayan Nafarizal ◽  
Hashim Saim ◽  
Mohd Zainizan Sahdan

The synthesized and characterization on the growth of copper oxide thin films on fluorine-doped tin oxide (FTO) coated glass with annealing and without annealing process has been studied by immersion techniques. Furthermore, ZnO layer has been used in order to improved the absorption spectrum of CuO films. The copper oxide films were analyzed on the morphological, structural, optical and electrical by field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), UV-Vis spectroscopy (absorbance) and I-V characteristics instruments. The atomic force microscope (AFM) was used in order to characterize the surface imaging of copper oxide films and the thicknesses were measured using a surface profiler. The AFM studies revealed that the roughness of the CuO films increased after annealing was applied this is due to the formation of large clusters of grains from the merging of small clusters grains. The CuO films thicknesses also becomes two times higher than the CuO films without annealing process.


2012 ◽  
Vol 486 ◽  
pp. 345-349
Author(s):  
Cheng Hsing Hsu ◽  
Pai Chuan Yang ◽  
Wen Shiush Chen ◽  
Jenn Sen Lin

Microstructure, optical and electrical properties of ZnO-doped (Zr0.8Sn0.2)TiO4 thin films prepared by rf magnetron sputtering on ITO/Glass substrates at different argon-oxygen (Ar/O2) mixture have been investigated. The surface structural and morphological characteristics analyzed by X-ray diffraction (XRD) and atomic force microscope (AFM) were found to be sensitive to the Ar/O2 ratio. Optical transmittance spectroscopy further revealed high transparency (over 70%) in the visible region of the spectrum. At an Ar/O2 ratio of 100/0 and a substrate temperature of 400°C, the ZnO-doped (Zr0.8Sn0.2)TiO2 films possess a dielectric constant of 44 at 10 MHz, a dissipation factor of 0.03 at 10 MHz, a leakage current density of 3.73×10-9 A/cm2.


2017 ◽  
Vol 35 (2) ◽  
pp. 355-361 ◽  
Author(s):  
M. Asadi ◽  
S.M. Rozati

Abstract Copper (II) oxide thin films were prepared by spray pyrolysis method on soda-lime glass substrates using copper acetate precursor solution. Influence of substrate temperature on structural and optical properties was investigated. Structural analysis of these layers were carried out by X-ray diffraction (XRD). Single phase nature and high crystallinity of CuO nanostructures were observed on XRD patterns. The general appearance of the films was uniform and black in color. FT-IR transmittance spectra confirmed the results from the XRD study. Selective solar absorber coatings of copper oxide (CuO) on stainless steel substrates was prepared by spray pyrolysis method. Effect of deposition temperature on optical properties of thin films was investigated. Optical parameters, absorbance (α) and emittance (α) were evaluated from reflectance data. It can be deduced that the porous structure, such as a light traps, can greatly enhance absorbance, while the composition, thickness and roughness of thin films can greatly influence the emissivity. Single phase nature and high crystallinity of CuO nanostructures were observed by XRD patterns. Solar absorbance of thin films were in the range of 85 % to 92 %.


Sign in / Sign up

Export Citation Format

Share Document