Direct band gap nature and optical response of BexMgyZn1−(x+y)Se

2016 ◽  
Vol 30 (03) ◽  
pp. 1650007
Author(s):  
Naeemullah ◽  
G. Murtaza ◽  
R. Khenata ◽  
S. Bin Omran

For the first time, the electronic and optical properties of the quaternary Be[Formula: see text]Mg[Formula: see text]Zn[Formula: see text]Se alloy have been investigated using first-principles calculations within the framework of density functional theory (DFT). Variations in the direct band gap with the change in [Formula: see text] and [Formula: see text] compositions show agreement with the experimental measurements. Evaluation of the dielectric function and refractive index reveals the optical activity in the visible and ultraviolet energy regions.

2014 ◽  
Vol 614 ◽  
pp. 70-74 ◽  
Author(s):  
Hai Ning Cao ◽  
Zhi Ya Zhang ◽  
Ming Su Si ◽  
Feng Zhang ◽  
Yu Hua Wang

First principles calculations based on the density functional theory (DFT) are employed to estimate the electronic structures of bilayer heterostructure of MoS2/WS2. The dependences of the band structures on external electric field and interlayer separation are evaluated. The external electric filed induces a semiconductor-metal transition. At the same time, a larger interlayer separation, corresponding to a weaker interlayer interaction, makes an indirect-direct band gap transition happen for the heterojunction. Our results demonstrate that electronic structure tailoring of two-dimensional layered materials should include both spatial symmetry control and interlayer vdW interactions engineering.


2014 ◽  
Vol 936 ◽  
pp. 591-595 ◽  
Author(s):  
Ai Min Hao ◽  
Na Qi Wang

We investigate the electronic, dynamic and thermodynamic properties of α-MnO2 using first-principles calculations based on density functional theory (DFT) with the GGA+U method. The results of electronic structures show that α-MnO2is a semiconductor with a direct band gap of 1.4 eV at Γ point. The results of dynamic properties indicate that the structure of α-MnO2 is dynamically unstable at ground-state. Several important thermodynamic quantities, such as entropy, enthalpy and Gibbs free energy, et al each as a function of temperature were presented.


RSC Advances ◽  
2015 ◽  
Vol 5 (102) ◽  
pp. 83876-83879 ◽  
Author(s):  
Chengyong Xu ◽  
Paul A. Brown ◽  
Kevin L. Shuford

We have investigated the effect of uniform plane strain on the electronic properties of monolayer 1T-TiS2using first-principles calculations. With the appropriate tensile strain, the material properties can be transformed from a semimetal to a direct band gap semiconductor.


2020 ◽  
Vol 31 (12) ◽  
pp. 2050178
Author(s):  
Waqas Mahmood ◽  
Arfan Bukhtiar ◽  
Muhammad Haroon ◽  
Bing Dong

The structural, electronic, dielectric and vibrational properties of zinc-blende (ZB) InAs were studied within the framework of density functional theory (DFT) by employing local density approximation and norm-conserving pseudopotentials. The optimal lattice parameter, direct band gap, static dielectric constant, phonon frequencies and Born effective charges calculated by treating In-4d electrons as valence states are in satisfactory agreement with other reported theoretical and experimental findings. The calculated band gap is reasonably accurate and improved in comparison to other findings. This work will be useful for more computational studies related to semiconductor devices.


2020 ◽  
Vol 22 (17) ◽  
pp. 9677-9684 ◽  
Author(s):  
Mehdi Ghambarian ◽  
Zahra Azizi ◽  
Mohammad Ghashghaee

A drastic improvement in the phosgene sensitivity of black phosphorene with defect engineering is reported for the first time within a periodic density functional theory framework.


RSC Advances ◽  
2016 ◽  
Vol 6 (98) ◽  
pp. 95846-95854 ◽  
Author(s):  
Wencheng Tang ◽  
Minglei Sun ◽  
Qingqiang Ren ◽  
Yajun Zhang ◽  
Sake Wang ◽  
...  

Using first principles calculations, we predicted that a direct-band-gap between 0.98 and 2.13 eV can be obtained in silicene by symmetrically and asymmetrically (Janus) functionalisation with halogen atoms and applying elastic tensile strain.


2019 ◽  
Vol 7 (12) ◽  
pp. 3569-3575 ◽  
Author(s):  
Shifeng Qian ◽  
Xiaowei Sheng ◽  
Xian Xu ◽  
Yuxiang Wu ◽  
Ning Lu ◽  
...  

Two-dimensional binary MX2 (M = Ni, Pd and Pt; X = P and As) exhibiting a beautiful pentagonal ring network is discussed through first principles calculations.


2018 ◽  
Vol 787 ◽  
pp. 25-30
Author(s):  
Lei Liu ◽  
Yan Ju Ji ◽  
Yi Fan Liu

The effect of strain on the band structure of the GeH monolayer has been investigated by first-principles calculations based on density functional theory. The results show that the change of the band gap under the zigzag strain, the armchair strain and the biaxial strain is nonlinear. The effect of the biaxial strain on the band gap is the most obvious. In addition, the changes of energy under the three kinds of strain are asymmetric and the biaxial strain make the energy change the most. This work has significant implication of strain to tune optical catalytic properties of GeH monolayer.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1926 ◽  
Author(s):  
Wei Zhang ◽  
Changchun Chai ◽  
Qingyang Fan ◽  
Yanxing Song ◽  
Yintang Yang

A metastable sp3-bonded carbon allotrope, Penta-C20, consisting entirely of carbon pentagons linked through bridge-like bonds, was proposed and studied in this work for the first time. Its structure, stability, and electronic and mechanical properties were investigated based on first-principles calculations. Penta-C20 is thermodynamically and mechanically stable, with equilibrium total energy of 0.718 and 0.184 eV/atom lower than those of the synthesized T-carbon and supercubane, respectively. Penta-C20 can also maintain dynamic stability under a high pressure of 100 GPa. Ab initio molecular dynamics (AIMD) simulations indicates that this new carbon allotrope can maintain thermal stability at 800 K. Its Young’s modulus exhibits mechanical anisotropy. The calculated ideal tensile and shear strengths confirmed that Penta-C20 is a superhard material with a promising application prospect. Furthermore, Penta-C20 is a direct band gap carbon based semiconducting material with band gap of 2.89 eV.


Sign in / Sign up

Export Citation Format

Share Document