Numerical simulation of wind loads on solar panels

2018 ◽  
Vol 32 (12n13) ◽  
pp. 1840009 ◽  
Author(s):  
Kao-Chun Su ◽  
Kung-Ming Chung ◽  
Shu-Tsung Hsu

Solar panels mounted on the roof of a building or ground are often vulnerable to strong wind loads. This study aims to investigate wind loads on solar panels using computational fluid dynamic (CFD). The results show good agreement with wind tunnel data, e.g. the streamwise distribution of mean surface pressure coefficient of a solar panel. Wind uplift for solar panels with four aspect ratios is evaluated. The effect of inclined angle and clearance (or height) of a solar panel is addressed. It is found that wind uplift of a solar panel increases when there is an increase in inclined angle and the clearance above ground shows an opposite effect.

Author(s):  
Onur Yemenici

The influence of panel inclination, wind direction, and longitudinal panel spacing on the wind loads of the model of ground-mounted solar panel arrays scaled 1:20 in a wind tunnel was investigated for a Reynolds number of 1.3 × 105. The experiments were carried out at the panel inclination of 25° and 45°, dimensionless panel spacing in tandem of 0.5 and 1, and the wind directions of the incoming flow were varied from 0° to 180° at 30° intervals. A constant temperature anemometer was used to measure the velocity and turbulence intensities, and a pressure scanner system measured static pressures. The results indicated that the net pressure coefficients of the solar panels were increased with the panel inclination angle and spacing between solar panels, and the maximum wind loads were obtained on the first windward panel. It was also observed that in terms of maximum uplift and drag, 180° and 0° was found to be the critical wind direction, respectively. In contrast, in terms of overturning moments, 30° and 150° were the critical wind directions.


2021 ◽  
Vol 248 ◽  
pp. 02018
Author(s):  
Handai Liu ◽  
Piao Zhang ◽  
Zhenqiang Lai ◽  
Xiaofeng Dong ◽  
Zhicheng Wang ◽  
...  

Solar panel supporting systems are often affected by strong wind loads, especially in typhoon-intensive areas such as Southeast Asia. This paper focuses on the study of flat-panel solar energy system. The numerical model of solar panel supporting system has been built by using the fluid flow control equations. Firstly, the numerical simulation of aerodynamic characteristics of the solar panel supporting system are conducted, and then the pressure results gained from CFD are loaded and coupled to the front and back of the solar panels. Lastly, the stress, strain and the modal analysis results of the support system under four different directional wind loads are achieved. The conclusions include: (1) under the condition of same wind speed, the wind pressure and distribution of the solar panel are different with different wind directions, and the wind load perpendicular to the solar panel has the greatest influence on the solar supporting system. (2)The modal frequency of flat panel solar supporting system is little affected by wind directions and average wind pressure. In the structure design, low order vibration should be considered mainly in the supporting part of the system, while the high order vibration should be generally considered in vibrating risk of solar panel. (3)The first six modal frequencies coupled with fluid-structure interaction of the flat panel solar supporting system are all slightly lower than the free modal frequencies.


CFD letters ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 61-71
Author(s):  
Ibroheng piya ◽  
Pathomporn Narato ◽  
Makatar Wae-hayee ◽  
Chayut Nuntadusit

In this work, flow and heat transfer in a channel having oval trench dimples were investigated numerically. 3-D channel flow with a cross-section of 300-mm width and 32-mm height were created using Computational Fluid Dynamic (CFD) with ANSYS, Fluent (V.15.0). Five oval trench dimples with 3-mm depth, 10.0-mm width and 45-mm length arranging with a single row and in-line configuration were located on the bottom surface of the channel. Reynolds number based on hydraulic diameter of the channel were fixed at Re=20,000 whereas a dimple inclined angle defined as the angle of dimple centreline to the mainstream was varied at 0, 15, 30 and 45 degrees. SST turbulent model was used to solve governing Equations. The result show that longitudinal vortex flow occurred at ?=15° to 45° which would be enhance heat transfer on the surface. When inclined angle became larger, the areas of Nusselt number and high total pressure coefficient took place at dimple edge in +Z direction. The peak of average spanwise Nusselt numbers took place for the case of ?=45°. Moreover, the area of high spanwise average Nusselt numbers (>100) for the case ?=30° was the largest.


2021 ◽  
Vol 33 (2) ◽  
Author(s):  
Paolo Capobianchi ◽  
Marcello Lappa

AbstractSystems of solid particles in suspension driven by a time-periodic flow tend to create structures in the carrier fluid that are reminiscent of highly regular geometrical items. Within such a line of inquiry, the present study provides numerical results in support of the space experiments JEREMI (Japanese and European Research Experiment on Marangoni flow Instabilities) planned for execution onboard the International Space Station. The problem is tackled by solving the unsteady non-linear governing equations for the same conditions that will be established in space (microgravity, 5 cSt silicone oil and different aspect ratios of the liquid bridge). The results reveal that for a fixed supporting disk radius, the dynamics are deeply influenced by the height of the liquid column. In addition to its expected link with the critical threshold for the onset of instability (which makes Marangoni flow time-periodic), this geometrical parameter can have a significant impact on the emerging waveform and therefore the topology of particle structures. While for shallow liquid bridges, pulsating flows are the preferred mode of convection, for tall floating columns the dominant outcome is represented by rotating fluid-dynamic disturbance. In the former situation, particles self-organize in circular sectors bounded internally by regions of particle depletion, whereas in the latter case, particles are forced to accumulate in a spiral-like structure. The properties of some of these particle attractors have rarely been observed in earlier studies concerned with fluids characterized by smaller values of the Prandtl number.


2021 ◽  
Vol 9 (6) ◽  
pp. 618
Author(s):  
Huan Wang ◽  
Lizhong Wang ◽  
Yi Hong ◽  
Amin Askarinejad ◽  
Ben He ◽  
...  

The large-diameter monopiles are the most preferred foundation used in offshore wind farms. However, the influence of pile diameter and aspect ratio on the lateral bearing behavior of monopiles in sand with different relative densities has not been systematically studied. This study presents a series of well-calibrated finite-element (FE) analyses using an advanced state dependent constitutive model. The FE model was first validated against the centrifuge tests on the large-diameter monopiles. Parametric studies were performed on rigid piles with different diameters (D = 4–10 m) and aspect ratios (L/D = 3–7.5) under a wide range of loading heights (e = 5–100 m) in sands with different relative densities (Dr = 40%, 65%, 80%). The API and PISA p-y models were systematically compared and evaluated against the FE simulation results. The numerical results revealed a rigid rotation failure mechanism of the rigid pile, which is independent of pile diameter and aspect ratio. The computed soil pressure coefficient (K = p/Dσ′v) of different diameter piles at same rotation is a function of z/L (z is depth) rather than z/D. The force–moment diagrams at different deflections were quantified in sands of different relative density. Based on the observed pile–soil interaction mechanism, a simple design model was proposed to calculate the combined capacity of rigid piles.


2019 ◽  
Vol 1 (1) ◽  
pp. 14
Author(s):  
Rizal Akbarudin Rahman ◽  
Aripriharta Aripriharta ◽  
Hari Putranto

The use of renewable energy as a source of electrical energyincreases every year. Unfortunately, Indonesia does not have manypower plants that utilize renewable energy sources. The mostpotential renewable energy in Indonesia is the sunlight with the helpof solar panels that converts solar energy into electrical energy.However, the environment could affect the solar panel module andin turn, affect the performance of solar panels or the generatedelectric energy. This research calculated the performance of solarpanels with a single-diode model using the Five Parameters methodthat required solar panel module specification data, the totalradiation absorbed by the solar panel module, and the temperatureof the environment. The Five Parameters method is a methodmodeled after solar panel module performance in the form of thesingle-diode equivalent circuit. The Five Parameters method isreliable in predicting the energy produced by the solar panels whenthe input data is limited. The results for using the Five Parametersin monocrystalline solar panels were Isc = 1.827 A, Imp = 0.662 A,Voc = 18.221 V, Vmp = 15.019 V, Pmp = 9.955 W. And the results inpolycrystalline solar panels were Isc = 1.926 A, Imp = 0.686 A, Voc =17.594 V, Vmp = 14.166 V, Pmp = 9.722 W. Based on the results; itwas concluded that the most efficient and optimised types of solarpanels on natural conditions in Sendang Biru Beach was themonocrystalline solar panel because it produced electrical outputpower of 9.955 W. Therefore, there could be a manufacturer ofsolar energy power plants to reduce the cost of electricity in thecoastal area, such as in Sendang Biru Beach.


SINERGI ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 73 ◽  
Author(s):  
Hamzah Eteruddin ◽  
Atmam Atmam ◽  
David Setiawan ◽  
Yanuar Z. Arief

People can make solar energy alternative energy by employing solar panels to generate electricity. The utilization of solar energy on a solar panel to generate electricity is affected by the weather and the duration of the radiation, and they will affect the solar panel’s temperature. There are various types of solar panels that can be found on the market today, including Mono-Crystalline and Poly-Crystalline. The difference in the material used needs to be observed in terms of temperature changes in the solar module. Our study’s findings showed that a change in the temperature would impact the solar panel’s output voltage, and the solar panel’s output voltage would change when it was connected to the load although the measured temperatures were almost the same.


Author(s):  
A. YUNUS NASUTION ◽  
ADITYA PRATAMA

The initial problems of fishermen still use their semi-modern catches and still use ice cubes as a cooling medium, due to the lack of innovation in the development of the cooling media caught by fishermen. The implementation of solar panel energy is the beginning for the development of refrigerator power consumption caught by fishermen. The goal is to calculate the cooling load on the refrigerator, calculate the Coefficient of performance (COP) at the refrigerator and the loading factors at the refrigerator, where the average ambient temperature is 34 ℃ and the temperature to be achieved is 0℃, the fisherman results used in the study this is a shrimp with a capacity of 20 kg and the cooling time is 4 hours. Where the total cooling load value is 244.29 Watt, multiplied by 10% safety factor, so the overall cooling load is 268.72 Watts, refrigerant mass flow rate is 0.0012 Kg / s, the evaporator capacity is 261 Watt, compressor power is 15.6 Watt, The coefficient of performance (COP) value was 16.73 while for the refrigerant capacity was 0.074 Tons of refrigerant, the loading factors in the study were used to run a refrigerator with 80 Watt power for 4 hours, so that the total refrigerator load was 320 Wh (Watt hour) , to produce 320 Wh power is used 2 solar panel modules with a capacity of 50 Wp (Watt Peak), and uses a solar change controller (SCC) with a capacity of 10 A. The output power of the solar panel is influenced by the intensity of the sun's light emitted, from the test obtained an average value the average output of solar panels is 90.6 watts, while the total power generated in 11 test points is 536 watts, the type used is polycrystalline, solar panels battery and inverter capacity must be greater than the refrigerator power consumption, in this study used a 12V 35 Ah battery capacity and 500 Watt Inverter


2018 ◽  
Vol 6 (6) ◽  
pp. 161-177
Author(s):  
Abene Abderrahmane ◽  
Mohamed Salah Eddine Seddiki ◽  
Aurora Morocini Mohamed Si Youcef

The use of variable baffle solar panels for drying is the low level of heat exchange with the air in the dynamic vein of the solar panel. This weakness in such systems does not provide optimal performance or high thermal efficiency from their use. There is, however, a very noticeable improvement in heat transfer when the baffles are placed in rows in the ducts. To conduct the experiments, solar energy was simulated, the goal being to improve the relationship between temperature and thermal efficiency of a solar panel air heating plane and to use the system to reduce the time to gently dry the lemon to keep these vitamins. lemon and destinine for a sustainable therapy (the lemon promotes the absorption of calcium and in case of rhumet gill or five also to treat sinusitis, against migraine solair dryness and also for sustainable conservation and also for a sustainable medicine for a sustainable medicine.


2019 ◽  
Vol 2 (2) ◽  
pp. 61-65
Author(s):  
Yusra Defawati

The aim is to motivate students in learning the photoelectric effect, the method used in this study is inquiry learning with the result that students can more easily understand the working principle of solar cells / solar panels so that learning is more edible and students understand it more easily. For students learning with this solar panel kit can add knowledge horizons and apply them, and give birth to new innovations. For teachers to be able to create a fun and meaningful learning atmosphere by further increasing creativity and innovation in learning. Schools as a means for teachers and students to interact can support and support, so that the learning process produces output that is valuable and characterized, and creative. Keywords: Solar cell / solar panel kit, learning media, microscopy, NPN transitor


Sign in / Sign up

Export Citation Format

Share Document