scholarly journals EXPERIMENTAL STUDY OF DRYING BY THE SOLARIUM VARIABLE BAFFLE SENSOR OF YELLOW AND GREEN LEMON TO KEEP THESE VITAMINS FOR A LASTING AND NATURAL MEDICINAL THERAPY

2018 ◽  
Vol 6 (6) ◽  
pp. 161-177
Author(s):  
Abene Abderrahmane ◽  
Mohamed Salah Eddine Seddiki ◽  
Aurora Morocini Mohamed Si Youcef

The use of variable baffle solar panels for drying is the low level of heat exchange with the air in the dynamic vein of the solar panel. This weakness in such systems does not provide optimal performance or high thermal efficiency from their use. There is, however, a very noticeable improvement in heat transfer when the baffles are placed in rows in the ducts. To conduct the experiments, solar energy was simulated, the goal being to improve the relationship between temperature and thermal efficiency of a solar panel air heating plane and to use the system to reduce the time to gently dry the lemon to keep these vitamins. lemon and destinine for a sustainable therapy (the lemon promotes the absorption of calcium and in case of rhumet gill or five also to treat sinusitis, against migraine solair dryness and also for sustainable conservation and also for a sustainable medicine for a sustainable medicine.

Author(s):  
Vijayakumar Rajendran ◽  
Harichandran Ramasubbu ◽  
Karthick Alagar ◽  
Vignesh Kumar Ramalingam

An experimental study has been carried out to enhance a solar air heater’s performance by integrating artificial roughness through baffles on the absorber plate. In this paper, the thermal and energy matrices analysis of a Solar Air Heater (SAH) roughened with V up perforated baffles have been investigated. The effect of various mass flow rates on the SAH was analyzed with and without baffles. Experimental outputs like outlet air temperature, useful energy (heat) gain and thermal efficiency were evaluated to confirm the performance improvement. The baffled absorber plate SAH was found to give the maximum thermal efficiency and useful energy gain of 89.3% and 1321.37 W at a mass flow rate of 0.0346 kg/s, 13% and 12% higher than SAH without baffle. This result showed that the V up-shaped ribs in flow arrangement provide better thermal performance than smooth plate SAH for the parameter investigated. Energy matrices analysis and carbon dioxide mitigation of the SAH system were also analyzed.


2013 ◽  
Vol 732-733 ◽  
pp. 78-82
Author(s):  
Ling Gao ◽  
Wen Guang Geng ◽  
Xiao Xu Ma ◽  
Xiu Li Ma ◽  
Guang Liang Luo ◽  
...  

This paper presents an experimental study on total heat transfer coefficient (ht) in oscillating heat pipe heat exchanger hot air flow tunnels, ht plays an important role in the oscillating heat pipes design process. In this paper, ht and the convective heat transfer coefficient (h) was investigated by experimentally and theoretical calculation respectively. From experimental study, the relationship between the ratio of heat transfer coefficient and the relative humidity is obtained. The results show that the ratio of ht to h increases from 5 to 20 as the relative humidity of the hot gas increasing from 19.22% to 60%. According to the experimental data, a matched curve and an empirical equation were presented, which can be described as ht=h(1.87783+0.09631x+0.0032x2).


2021 ◽  
Author(s):  
Stepan Shapoval ◽  
Nadiia Spodyniuk ◽  
Vasyl Zhelykh ◽  
Volodymyr Shepitchak ◽  
Pavlo Shapoval

AbstractIn line with the energy development strategy of Europe, it is necessary to implement energy efficient buildings, in which the external enclosures are converters of solar energy to thermal. Therefore, the purpose of the publication was the scientific substantiation and development of the solar heating system with the use of rooftop solar panels. Graphical and analytical dependences of the coefficient of thermal efficiency of the solar panel in heat supply system from the angles of solar radiation incoming and the density of the radiation flux were obtained. Analysis of the results showed that the coefficient of thermal efficiency of the solar panel without transparent coating with the placement of pipelines of the circulation circuit of the coolant over the heat absorber increases by 50%.


2019 ◽  
Author(s):  
Ni Li ◽  
Arianna Fatahi ◽  
Dennis Lee ◽  
Jim Y. Kuo ◽  
He Shen

Abstract In comparison to fossil fuels, solar energy is a more sustainable option due to its high availability and less environmental impact. Improving the efficiency of solar farms has been a primary concern of solar energy research. Many studies focus on the control of the tilt angle of solar modules to maximize their solar radiation reception and energy generation. However, an increase in solar radiation is accompanied by an increase in module temperature, which is known to be a significant parameter that reduces the power generation efficiency. Wind is another influential factor that helps Photovoltaic systems maintain a low operating temperature by enhancing the rate of heat transfer. Therefore, solar radiation and wind behavior are both critical parameters that must be considered to optimize solar panel performance. In this paper, the effect of wind conditions on solar panel performance will be examined. The solar panel energy output model will be built by empirically considering the irradiation, ambient temperature, wind speed, and wind direction. The published weather data and energy output data for the year 2017–2018 have been collected from Antelope Valley Solar Ranch, located in Lancaster, California. Four models have been proposed and the results indicate that the model which incorporates the wind conditions has the highest accuracy in approximating the energy production of solar farms. Among the factors that affect the temperature of solar panels and further the efficiency of solar panels including solar irradiation, convection, conduction, wind plays a major role in convective heat transfer. Based on this model, the potential improvement of energy generation via introducing a horizontal installation angle and adjusting this angle monthly according to the wind conditions is further analyzed. These results will help designers improve the design of solar farms by taking into consideration the local weather conditions.


Author(s):  
Iwan Arissetyadhi ◽  
Tresna Dewi ◽  
RD Kusumanto

Indonesia has a high potential for renewable energy, especially solar power, due to its location in the equator and blessed with an abundance of sunlight. However, the energy potential from the sun is not maximally utilized. One of the efforts to increase the generated electricity and efficiency is by applied the panels in arches setting. This setting is made possible by the availability of the semi-flexible monocrystalline solar panel. This paper investigates the increment of harvested power and efficiency by arranging the solar panel in concave, convex, and plane settings. The data were taken in August 2019, where Palembang experiences the dry season and January 2020 during the rainy season. The highest power produced (20.27 Watt) and efficiency (13.14%) were achieved in a concave setting during the dry season. The convex setting produced more power and efficiency (13.26 Watt and 9.30%) compared to the plane setting (10.24 Watt and 9.71%). These results show that arches setting are more efficient to harvest solar power and give more extensive applications such as to power a dynamics mobile robot applied in agriculture.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
S. Razvarz ◽  
R. Jafari

This paper represents an experimental study about the effect of curves related to thermosyphons and heat pipes with different active fluids and inclination angle at the thermal efficiency. The nanofluid utilized in this work is an aqueous soluble of Al2O3 nanoparticles with 35 nm diameter in pure water. The test saturation level of nanoparticles is 0%, 1%, and 3%wt. All the experiments were conducted and repeated at inclination angle of 30°, 60°, and 90° (vertical). The article presents the gravity impacts on the heat transfer characteristics in different angles and the effects of working fluids and tilt angle of heat pipe tube by the addition of nanoparticles and weight fractions on the thermal efficiency of heat pipe at different inclination. According to the experimental results, the heat pipe at the tilt angle of 60° generates the superior results. At a particle volume concentration of 1%, the use of Al2O3/water nanofluid gives significantly higher heat transfer.


2021 ◽  
pp. 1-27
Author(s):  
Kuan Zheng ◽  
Wei Tian ◽  
Peng Zhang ◽  
Yu Rao ◽  
Hui Hu

Abstract An experimental study was conducted to characterize the evolution of turbulent boundary layer flow over a micro-rib-dimple-structured surface. In addition to measuring the surface pressure distribution and detailed flow field inside the dimple cavity, the heat transfer performance over the rib-dimpled surface was investigated using transient liquid crystal thermography. The flow field measurements were correlated with the heat transfer measurements to elucidate the underlying physical mechanism of the improvement in thermal efficiency due to the micro-rib structure. It was found that, compared to the dimpled surface, the micro-rib structure induces a stronger downwash flow and acts as a tabulator to enhance the turbulent mixing of the downstream flow, which significantly restricts the flow separation and the recirculating flow inside the dimple cavity. The dominant flows inside the dimple cavity are the downwash and successive upwash flows, which significantly enhance the turbulent mixing and consequently, improve the heat transfer performance over the rib-dimpled surface. The measurements of the pressure loss and heat transfer performance indicated that the rib-dimpled surface has an overall thermal efficiency approximately 12%−16% higher than that of the dimpled surface owing to the micro-rib structure.


Sign in / Sign up

Export Citation Format

Share Document