Continuous manufacturing of 3D patterned hybrid film via a roll-to-roll process with UV curing

2020 ◽  
Vol 34 (07n09) ◽  
pp. 2040039
Author(s):  
Jaehan Jung

A strategy for continuous fabrication of a microscale 3D-patterned hybrid composite film composed of alumina and acrylate resin was developed using roll-to-roll production. Conventional thermal curing was replaced with a UV curing procedure to facilitate rapid and economical processing. A seamless engraved soft urethane mold was first produced using a patterned metal roll. Subsequently, alumina and acrylate resin were cured on the engraved mold via UV irradiation to produce patterned hybrid films. The dispersion of alumina particles in acylate resin was enhanced by utilizing amine acrylate. Photopolymerization was measured using Fourier-transform infrared spectroscopy. The morphology of the soft engraved mold and the patterned hybrid film was investigated using scanning electron microscopy.

RSC Advances ◽  
2015 ◽  
Vol 5 (107) ◽  
pp. 88471-88476 ◽  
Author(s):  
Tianqi Guo ◽  
Keyu Han ◽  
Liping Heng ◽  
Moyuan Cao ◽  
Lei Jiang

A highly ordered open-pore hybrid film was fabricated by controlling the substrate roughness and wettability. The composite with different wettability on the two side resulted in an attractive unidirectional water-penetration function (see figure).


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 325
Author(s):  
Nitin Chandra teja Dadi ◽  
Matúš Dohál ◽  
Veronika Medvecká ◽  
Juraj Bujdák ◽  
Kamila Koči ◽  
...  

This research was aimed at the preparation of a hybrid film based on a layered silicate saponite (Sap) with the immobilized photosensitizer phloxine B (PhB). Sap was selected because of its high cation exchange capacity, ability to exfoliate into nanolayers, and to modify different surfaces. The X-ray diffraction of the films confirmed the intercalation of both the surfactant and PhB molecules in the Sap film. The photosensitizer retained its photoactivity in the hybrid films, as shown by fluorescence spectra measurements. The water contact angles and the measurement of surface free energy demonstrated the hydrophilic nature of the hybrid films. Antimicrobial effectiveness, assessed by the photodynamic inactivation on hybrid films, was tested against a standard strain and against methicillin-resistant bacteria of Staphylococcus aureus (MRSA). One group of samples was irradiated (green LED light; 2.5 h) and compared to nonirradiated ones. S. aureus strains manifested a reduction in growth from 1-log10 to over 3-log10 compared to the control samples with Sap only, and defects in S. aureus cells were proven by scanning electron microscopy. The results proved the optimal photo-physical properties and anti-MRSA potential of this newly designed hybrid system that reflects recent progress in the modification of surfaces for various medical applications.


e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianyun He ◽  
Jinping Xiong ◽  
Bingqian Xia

AbstractOrganic-inorganic hybrid films were prepared using tetraethylorthosilicate (TEOS) oligomer and special acrylated polyester (SAP) via a UV-curing process. TEOS oligomers were prepared in the presence of water and ethanol using hydrochloric acid as the catalyst and characterized using 1H NMR, 29Si NMR and MALDI-TOF mass spectra. Special acrylated polyester was synthesized by 1,4-cyclohexane dimethanol, neopentyl glycol, 1,4-butanediol, maleic anhydride, adipic acid, and acrylic acid. Hybrid films were cured by UV light and the thermal properties, dynamic mechanical properties, and tensile properties of the hybrid films were evaluated as the function of TEOS oligomer content. The morphology of the hybrid films was examined using atomic force microscopy (AFM). The microscopy and dynamic mechanical data indicated that the hybrid films were heterogeneous materials with various inorganic particle sizes dispersed within the organic matrix. The results indicated that after incorporating the TEOS oligomer, the strength and thermal stability of the hybrid films were enhanced.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Dan Feng ◽  
Jie Wang ◽  
George T.-C. Chiu ◽  
Arvind Raman

Abstract The prediction and measurement of vibrations of the low-frequency transverse modes of tensioned webs are of increasing interest for process monitoring, quality control, and process stability in roll-to-roll flexible hybrid and stretchable electronics manufacturing, nanomanufacturing, coated layer patterning, and other continuous manufacturing technologies. Acting as distributed added mass, the surrounding air significantly affects the frequency responses of taut thin webs in ambient roll-to-roll processes in comparison with those in vacuo. In this paper, we present closed-form, semi-analytical, universal hydrodynamic functions used to accurately predict the lowest symmetric and anti-symmetric transverse frequency response for any uniaxially tensioned web of arbitrary material and aspect ratio used in roll-to-roll processes. Experimental validation is carried out by using pointwise laser measurements of acoustically excited webs with different pre-tensions, web materials, and aspect ratios. These closed-form hydrodynamic functions provide roll-to-roll process designers a convenient way to predict the lowest frequencies of such web systems without the need to resort to computationally intensive methods; alternately, these functions allow for the quick identification of conditions when air-coupling is important to determine the web’s vibration response. The results presented herein are expected to help ongoing efforts to improve process monitoring and control in a variety of roll-to-roll continuous manufacturing technologies.


2019 ◽  
Vol 55 (73) ◽  
pp. 10956-10959 ◽  
Author(s):  
Sunpet Assavapanumat ◽  
Bhavana Gupta ◽  
Gerardo Salinas ◽  
Bertrand Goudeau ◽  
Chularat Wattanakit ◽  
...  

A hybrid film composed of chiral encoded mesoporous platinum and polypyrrole shows differential wireless actuation as a function of the chiral nature of an enantiomer present in solution.


2012 ◽  
Vol 84 ◽  
pp. 13-18 ◽  
Author(s):  
Zhi Ming Liu ◽  
Yuan Lin An ◽  
Wen Jian Wu

As one of the main methods to study biomembranes, the construction of highly active bionic biomembrane systems is very important. Based on the hybrid film of gold nanoparticles and cellulose, a novel system of bionic biomembrane is demonstrated. The ratio effects of lecithin to cholesterin on the stability of bilayer lipid membranes are studied. Lipid solutions that can form stable membranes in the air and in some aqueous solutions are prepared. The bionic biomembranes composed of bilayer lipid membranes and hybrid films of gold nanoparticles and cellulose can be sustained for a long period in aqueous solutions. The bionic biomembranes also exhibit some interesting electrochemical properties.


2016 ◽  
Vol 16 (3) ◽  
pp. 2687-2691 ◽  
Author(s):  
J. H. Chun ◽  
J. M. Cheon ◽  
B. Y. Jeong ◽  
N. J. Jo

2011 ◽  
Vol 399-401 ◽  
pp. 390-393
Author(s):  
Ai Huan Gao ◽  
Pi Hui Pi ◽  
Jiang Cheng ◽  
Zhuo Ru Yang

Aluminum sheet was encapsulated by inorganic-organic hybrid film through a base catalyzed sol-gel method using organic acrylate silane resin PMBV and TEOS as precursors. FTIR and AFM characterizations prove that PMBV and TEOS have hydrolyzed and co-condensed with each other in the sol-gel process to form an uniform film on the surface of aluminum sheet. XPS result shows hydroxyl groups on aluminum surface have taken part in the co-condensation reaction.


Sign in / Sign up

Export Citation Format

Share Document