EPITAXIAL GROWTH OF YTTRIA-STABILIZED ZIRCONIA FILMS ON SILICON BY R.F. MAGNETRON SPUTTERING

1991 ◽  
Vol 05 (27) ◽  
pp. 1829-1835 ◽  
Author(s):  
Q.X. SU ◽  
L. LI ◽  
Y.Y. ZHAO ◽  
Y.Z. ZHANG ◽  
P. XU

Yttria-stabilized Zirconia(YSZ) films were deposited on (100)Si substrates by R.F. magnetron sputtering method. X-ray diffraction analysis showed that the best YSZ films were cubic in structure and was grown epitaxially with (100) orientation. The (200) peak of YSZ films was 0.8° of the full width at half of the maximum, X-ray diffraction based on Seemann-Bohlin focusing geometry showed no peaks. The morphology of the YSZ films was observed by scanning electron microscopy. The effects of the processing conditions (such as substrate temperature, oxygen partial pressure, etc.) on the structure of the film were also discussed.

2007 ◽  
Vol 124-126 ◽  
pp. 235-238
Author(s):  
Moon Jin Hwang ◽  
Chong Soo Han

Porous YSZ(8 mol% yttria-stabilized zirconia) was prepared by an acid leaching of ZnO-YSZ composite. The ZnO-YSZ composites were obtained by two different methods, a 1450 °C sintering of the mechanical mixture of ZnO and YSZ powders or a decomposition of Zn(NO3)2 deposited on YSZ and a subsequent sintering. The XRD (X-ray diffraction) pattern of the composite indicated that it was a mixture of ZnO and YSZ even after the sintering. Sharp edge or round edge of YSZ was observed in SEM (Scanning Electron Microscope) image of the porous-YSZ from the mixture of ZnO and YSZ, or Zn(NO3)2 deposited on YSZ, respectively. The porous YSZ from the composite having ZnO component greater than 60 wt% shows low mechanical strength. As the ZnO content of the composite increased, the porosity and gas permeability of the porous YSZ increased. From the result, it was suggested that ZnO is a candidate to generate pores in YSZ bulk or membrane.


2007 ◽  
Vol 21 (18n19) ◽  
pp. 3156-3159
Author(s):  
J. YANG ◽  
H. Z. LIU ◽  
H. ZHANG ◽  
F. QU ◽  
Q. ZHOU ◽  
...  

An Y 2 O 3 film, as seed layer, was directly deposited on the meter long length rolling assisted biaxially textured substrate (RABiTS) NiW tapes by the reactive magnetron sputtering process. Yttria stabilized zirconia (YSZ) and CeO 2 films were further carried out as the barrier and cap layers, and YBCO layer was prepared by magnetron sputtering technique as well. X-ray diffraction was employed to characterize the texture of film. The results showed that on NiW tapes highly textured films were obtained.


2020 ◽  
Vol 38 (4A) ◽  
pp. 491-500
Author(s):  
Abeer F. Al-Attar ◽  
Saad B. H. Farid ◽  
Fadhil A. Hashim

In this work, Yttria (Y2O3) was successfully doped into tetragonal 3mol% yttria stabilized Zirconia (3YSZ) by high energy-mechanical milling to synthesize 8mol% yttria stabilized Zirconia (8YSZ) used as an electrolyte for high temperature solid oxide fuel cells (HT-SOFC). This work aims to evaluate the densification and ionic conductivity of the sintered electrolytes at 1650°C. The bulk density was measured according to ASTM C373-17. The powder morphology and the microstructure of the sintered electrolytes were analyzed via Field Emission Scanning Electron Microscopy (FESEM). The chemical analysis was obtained with Energy-dispersive X-ray spectroscopy (EDS). Also, X-ray diffraction (XRD) was used to obtain structural information of the starting materials and the sintered electrolytes. The ionic conductivity was obtained through electrochemical impedance spectroscopy (EIS) in the air as a function of temperatures at a frequency range of 100(mHz)-100(kHz). It is found that the 3YSZ has a higher density than the 8YSZ. The impedance analysis showed that the ionic conductivity of the prepared 8YSZ at 800°C is0.906 (S.cm) and it was 0.214(S.cm) of the 3YSZ. Besides, 8YSZ has a lower activation energy 0.774(eV) than that of the 3YSZ 0.901(eV). Thus, the prepared 8YSZ can be nominated as an electrolyte for the HT-SOFC.


2021 ◽  
Vol 21 (11) ◽  
pp. 5592-5602
Author(s):  
Samira Almasi ◽  
Ali Mohammad Rashidi

The effect of the yttria-stabilized zirconia (YSZ) nanoparticle loading in an electro-less bath was considered as one of the vital synthesis variables for control Ni content and microstructure of prepared nanocomposite particles, which are two crucial factors to achieving high-performance SOFC anode. Nanocomposite particles were prepared using a simple electroless method without any expensive pretreatment of sensitizing by Sn2+ ions as well as activating by Pd2+ ions that are usually used to apply nickel coating on the surface of a non-conductive substrate. The process was performed by adding YSZ nanoparticles into NaOH solution, separating them from the solution by the centrifugal method, then providing several water-based nanofluids with different concentrations of activated YSZ nanoparticles, mixing them with NiCI2 solution, followed by adding the hydrazine and then NaOH solution. X-ray diffraction and scanning electron microscopy coupled with energy dispersive X-ray analysis were used to analyze the prepared nanocomposite particles. It is observed that after adding YSZ nanoparticles into the NaOH solution, the pH of the solution varied gradually from a starting pH of 10.2 to 9. Also, by increasing the YSZ nanoparticles loading in the electroless bath from 76 mg/l to 126 mg/l, the grain size of Ni deposits, the Ni content and the average size of the prepared nanocomposite particles decreased. The electrochemical mechanism previously proposed for the nickel ion reduction was modified, and a novel analytical model was proposed for variation of the efficiency of Ni deposition with YSZ nanoparticles loading.


2011 ◽  
Vol 1307 ◽  
Author(s):  
M. Sajjad ◽  
H. X. Zhang ◽  
P. X. Feng

ABSTRACTThe synthesis of boron nitride nanowires on silicon (Si) and nanorods on molybdenum (Mo) substrates at the same experimental conditions was composed. Fine tip nanowires with diameters around 50 nm were produced on Si substrates, whereas, nanorods with diameter around 100 nm were formed on Mo substrates. The change in length from 5 μm to 100 μm for nanowires and 0.2 μm to 0.8μm for nanorods following variation of substrate temperature were studied systematically.Scanning Electron Microscopy was used to analyze the surface images of BN nanowires and nanorods. Energy Dispersive X-Ray spectroscopy (EDS) was used to analyze boron and nitrogen concentration in the samples. The crystal structures of BN samples were investigated using Raman spectroscopy and x-ray diffraction. The experimental results showed that the nanorods are hexagonal mixed with cubic, whereas the nanowires are hexagonal.


2009 ◽  
Vol 67 ◽  
pp. 271-276 ◽  
Author(s):  
Raja Ram Prasad ◽  
B.S. Sunder Daniel

Precursor powder of calcia-stabilized zirconia (CSZ) with 4, 7 and 15 wt % was synthesized by mechanical alloying (MA) in cryogenic conditions. The phase evolution of the precursor powders over 100 hours of MA was analyzed by powder X-ray diffraction technique. Cylindrical shaped sensor elements of the calcined powders were fabricated in a uniaxial press followed by sintering at 15000C for 3 hours. Scanning electron microscopy (SEM) was used to analyze the microstructure of the sintered pellets. The co-relation between material compositions, microstructure of the sinter pellets and the electrical properties of the sensors are discussed.


1999 ◽  
Vol 55 (5) ◽  
pp. 726-735 ◽  
Author(s):  
N. Ishizawa ◽  
Y. Matsushima ◽  
M. Hayashi ◽  
M. Ueki

The fluorite-related cubic structure of yttria-stabilized zirconia, Zr0.75 8Y0.24 2O1.87 9, has been studied by single-crystal X-ray diffraction using synchrotron radiation and by EXAFS. Two diffraction data sets obtained at X-ray energies of 512 and 10 eV below the Y K edge revealed that in the average structure Zr atoms are displaced from the origin of the space group Fm3¯m along 〈111〉 by 0.19 Å, while Y atoms reside at the origin. Approximately 48% of the O atoms occupy the ideal position in the fluorite-type structure, while 43% of O atoms are displaced from the ideal position along 〈001〉 by 0.31 Å. The remaining 9% of O atoms are presumably sited at interstitial positions. Local structures around Zr and Y are investigated by combining the results of single-crystal X-ray diffraction and EXAFS studies.


2014 ◽  
Vol 1019 ◽  
pp. 302-310 ◽  
Author(s):  
Kalenda Mutombo ◽  
Christina Kgomo ◽  
P. Rossouw

The interaction between the Ti6Al4V alloy and the mould materials was investigated. The alpha-case was characterized by Vickers hardness tester, optical and scanning electron microscopy equipped with electron dispersive X-ray spectrometry (EDX). X-ray diffraction (XRD) analysis was performed on as cast and on YFSZ or YZ-Blended face-coats. From the experimental results, a distinct alpha-case formation was revealed. The YFSZ led to a thicker and harder alpha-case than the YZ-Blended face-coat. The EDX revealed the presence of Zr and Si elements in both alpha-cases. Therefore, from experimental results and thermodynamic calculations, pure ZrO2and SiO2may react with Ti.


Sign in / Sign up

Export Citation Format

Share Document