ELECTRICAL RESISTIVITY OF COBALT-BORON LQA ALLOYS

1995 ◽  
Vol 09 (23) ◽  
pp. 1535-1538 ◽  
Author(s):  
S. M. M. R. NAQVI ◽  
S. DABIR H. RIZVI ◽  
SAJIDA JAMILA ◽  
SHABANA RIZVI ◽  
S. MOHSIN RAZA ◽  
...  

Activation energies determined from Arrhenius plot for cobalt-boron liquid quenched amorphous alloys in the temperature range 40 K < T < 300 K , suggest vacancy and interstitial formation to nucleate crystalline phases in an amorphous matrix preferably at sites where dangling bonds are present. Nucleation of crystallites with preferential tetragonal or orthorhombic structures is a self-evolving process due to catalytic presence of dangling bonds in an amorphous material and that the occurrence of negative activation energies support this evidence.

1995 ◽  
Vol 09 (03n04) ◽  
pp. 195-200 ◽  
Author(s):  
S. M. M. R. NAQVI ◽  
S. DABIR H. RIZVI ◽  
S. MOHSIN RAZA ◽  
MUSHTAQ AHMAD GORMANI ◽  
N. FAROOQUI

Electrical resistivity measurements of amorphous ( Fe x Co 100-x)83 B 17 alloys in the temperature range 40 K < T < 300 K have been obtained. We observed from the analysis of the resistivity data that there is no s-d interaction or Js-d coupling. An empirical relationship for estimating Θ D is suggested from the normalized electrical resistivity data, which holds good both for theoretical and estimated Θ D . For s-d interaction or Js-d coupling to occur in ferromagnetic amorphous alloys, ordering of ferromagnetic domains, i.e. Heisenberg interaction in a disordered matrix, would require temperatures of T ≤ Θ D /50 ≃ 0.02 Θ D .


2021 ◽  
Vol 904 ◽  
pp. 111-116
Author(s):  
Vladimir Tsepelev ◽  
Yuri N. Starodubtsev ◽  
Viktor V. Konashkov ◽  
Yekaterina A. Kochetkova

We investigated the kinematic viscosity and electrical resistivity of the multicomponent Fe74Cu1Nb1.5Mo1.5B8.5Si13.5 melt during three heating–cooling cycles. The temperature dependence of kinematic viscosity and electrical resistivity have the anomalous zones in the same temperature range and they are associated with the liquid–liquid structure transition (LLST). The anomalies were explained by changes in the activation energy and the cluster size. As the cluster size decreases, the activation energy decreases, but the viscosity and electrical resistance increase. LLST begins with the cluster dissolution, and as a result, the Arrhenius plot becomes nonlinear in the transition temperature range. After three cycles of heating–cooling, the temperature dependences of the kinematic viscosity and electrical resistance did not qualitatively change, and this allows us to conclude that LLST is thermoreversible. With an increase in the number of thermal cycles, the activation energy of viscous flow decreases, as well as the onset temperature and temperature range of LLST.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


2007 ◽  
Vol 22 (2) ◽  
pp. 428-436 ◽  
Author(s):  
S. Jayalakshmi ◽  
J.P. Ahn ◽  
K.B. Kim ◽  
E. Fleury

We report the hydrogenation characteristics and mechanical properties of Ti50Zr25Cu25 in situ composite ribbons, composed of β-Ti crystalline phase dispersed in an amorphous matrix. Upon cathodic charging at room temperature, high hydrogen absorption up to ∼60 at.% (H/M = ∼1.2) is obtained. At such a high concentration, hydrogen-induced amorphization occurs. Mechanical tests conducted on the composite with varying hydrogen concentrations indicate that the Ti50Zr25Cu25 alloy is significantly resistant to hydrogen embrittlement when compared to conventional amorphous alloys. A possible mechanism that would contribute toward hydrogen-induced amorphization and hydrogen embrittlement is discussed.


2009 ◽  
Vol 24 (2) ◽  
pp. 430-435 ◽  
Author(s):  
D. Li ◽  
H.H. Hng ◽  
J. Ma ◽  
X.Y. Qin

The thermoelectric properties of Nb-doped Zn4Sb3 compounds, (Zn1–xNbx)4Sb3 (x = 0, 0.005, and 0.01), were investigated at temperatures ranging from 300 to 685 K. The results showed that by substituting Zn with Nb, the thermal conductivities of all the Nb-doped compounds were lower than that of the pristine β-Zn4Sb3. Among the compounds studied, the lightly substituted (Zn0.995Nb0.005)4Sb3 compound exhibited the best thermoelectric performance due to the improvement in both its electrical resistivity and thermal conductivity. Its figure of merit, ZT, was greater than the undoped Zn4Sb3 compound for the temperature range investigated. In particular, the ZT of (Zn0.995Nb0.005)4Sb3 reached a value of 1.1 at 680 K, which was 69% greater than that of the undoped Zn4Sb3 obtained in this study.


1991 ◽  
Vol 237 ◽  
Author(s):  
Toyohiko J. Konno ◽  
Robert Sinclair

ABSTRACTThe crystallization of sputter-deposited Si/Al amorphous alloys was examined by transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). In-situ high-resolution TEM reveals the existence of an Al layer between the amorphous matrix and the growing crystalline phase. The activation energy for the growth is about 1.2eV, roughly corresponding to the activation energy of Si diffusion in Al. These two observations support the view that a crystallization mechanism, in which an Al buffer layer provides the shortest reaction path, is responsible for the reaction. The product microstructure exhibits secondary crystallization at a higher temperature.


2003 ◽  
Vol 328 (3-4) ◽  
pp. 179-192 ◽  
Author(s):  
Yu.P. Krasny ◽  
J. Krawczyk ◽  
M. Kaptur ◽  
Z. Gurskii

Sign in / Sign up

Export Citation Format

Share Document