Badminton Recognition and Tracking System

Author(s):  
Zhihao Cui ◽  
Ting Zheng

Human–computer interaction systems have been developed in large numbers and quickly applied to sports. Badminton is the best sport for applying robotics because it requires quick recognition and fast movement. For the development of badminton recognition and tracking systems, it is important to accurately identify badminton, venues, and opponents. In this paper, we designed and developed a badminton recognition and tracking system using two 2 000 000-pixel high-speed cameras. The badminton tracking system has a transmission speed of 250[Formula: see text]fps and the maximum speed of the badminton resonator is 300[Formula: see text]km/h. The system uses the camera link interface Camera Link to capture images of high-speed cameras and process all captured images in real time using different regions of interest settings. In order to improve accuracy, we propose a new method for judging the center point of badminton. We have proposed a detector that detects the four corner points of the field by using the contour information of the badminton court when the approximate position of the badminton court is known. We set the sensing area according to the approximate position of the badminton court and use the histogram in the sensing area to select the point closest to the contour. Specify the intersection of the line as the corner point of the badminton court. The proposed angle detector has a high detection rate. It is more than 10 times more accurate than traditional detectors. The moving badminton is detected by an elliptical detector. We propose a method to find the center of the correct ellipse from the four candidates by selecting the four candidate contours of the ellipse. Compared to conventional circular detectors and points on three-dimensional coordinates, the proposed elliptical detector reduces the error by about 3[Formula: see text]mm.

2007 ◽  
Vol 2007 (0) ◽  
pp. _2A2-O06_1-_2A2-O06_4
Author(s):  
Takeshi HASEGAWA ◽  
Naoko OGAWA ◽  
Hiromasa OKU ◽  
Masatoshi ISHIKAWA

2018 ◽  
Vol 2 (1) ◽  
pp. 37-44
Author(s):  
Sharuddin Mohd Dahuri ◽  

This paper presents the structure and static model of engine camshaft analysis. For the purposes of this analysis, the finite element method is used. Camshaft is one of the critical components for effective and precise work of internal combustion engines. This camshaft rotates at high speed causing pressure and vibration in the system. Camshafts are also subject to varying fatigue burden due to cam plunger contact. These precise values are required to be determined to prevent failure in the camshaft. The objective of the project is to model and to perform pressure analysis on the camshaft machine. In this project the standard engine camshafts are modeled and analyzed using the CATIA V5R21 software respectively. This model is created by the basic requirements of the engine. It is done with an existing background, such as the power of acting on cam by means of a valve while running at maximum speed. Here the approach becomes fully CAE based. CAE-based approaches enrich Research and limit the time span. A study was conducted to predict the behavior of the different camshafts structure of the material using the finite three-dimensional pressure of the element. Four types of materials such as Steel, Titanium, Aluminum and Magnesium are taken into account. FEA Stress and maximum displacement decisions are calculated and compared to all of the above materials. The conclusion is to focus on the material suitable for the camshaft to reduce the maximum displacement and weight. Titanium materials become the best material for camshaft manufacturing based on analysis.


Author(s):  
Robert W. Mackin

This paper presents two advances towards the automated three-dimensional (3-D) analysis of thick and heavily-overlapped regions in cytological preparations such as cervical/vaginal smears. First, a high speed 3-D brightfield microscope has been developed, allowing the acquisition of image data at speeds approaching 30 optical slices per second. Second, algorithms have been developed to detect and segment nuclei in spite of the extremely high image variability and low contrast typical of such regions. The analysis of such regions is inherently a 3-D problem that cannot be solved reliably with conventional 2-D imaging and image analysis methods.High-Speed 3-D imaging of the specimen is accomplished by moving the specimen axially relative to the objective lens of a standard microscope (Zeiss) at a speed of 30 steps per second, where the stepsize is adjustable from 0.2 - 5μm. The specimen is mounted on a computer-controlled, piezoelectric microstage (Burleigh PZS-100, 68/μm displacement). At each step, an optical slice is acquired using a CCD camera (SONY XC-11/71 IP, Dalsa CA-D1-0256, and CA-D2-0512 have been used) connected to a 4-node array processor system based on the Intel i860 chip.


2021 ◽  
Author(s):  
Scott J. Peltier ◽  
Brian E. Rice ◽  
Ethan Johnson ◽  
Venkateswaran Narayanaswamy ◽  
Marvin E. Sellers

2018 ◽  
Author(s):  
Yi Chen Mazumdar ◽  
Michael E. Smyser ◽  
Jeffery Dean Heyborne ◽  
Daniel Robert Guildenbecher

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


Author(s):  
Carlos Lago-Peñas ◽  
Anton Kalén ◽  
Miguel Lorenzo-Martinez ◽  
Roberto López-Del Campo ◽  
Ricardo Resta ◽  
...  

This study aimed to evaluate the effects playing position, match location (home or away), quality of opposition (strong or weak), effective playing time (total time minus stoppages), and score-line on physical match performance in professional soccer players using a large-scale analysis. A total of 10,739 individual match observations of outfield players competing in the Spanish La Liga during the 2018–2019 season were recorded using a computerized tracking system (TRACAB, Chyronhego, New York, USA). The players were classified into five positions (central defenders, players = 94; external defenders, players = 82; central midfielders, players = 101; external midfielders, players = 72; and forwards, players = 67) and the following match running performance categories were considered: total distance covered, low-speed running (LSR) distance (0–14 km · h−1), medium-speed running (MSR) distance (14–21 km · h−1), high-speed running (HSR) distance (>21 km · h−1), very HSR (VHSR) distance (21–24 km · h−1), sprint distance (>24 km · h−1) Overall, match running performance was highly dependent on situational variables, especially the score-line condition (winning, drawing, losing). Moreover, the score-line affected players running performance differently depending on their playing position. Losing status increased the total distance and the distance covered at MSR, HSR, VHSR and Sprint by defenders, while attacking players showed the opposite trend. These findings may help coaches and managers to better understand the effects of situational variables on physical performance in La Liga and could be used to develop a model for predicting the physical activity profile in competition.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2670
Author(s):  
Thomas Quirin ◽  
Corentin Féry ◽  
Dorian Vogel ◽  
Céline Vergne ◽  
Mathieu Sarracanie ◽  
...  

This paper presents a tracking system using magnetometers, possibly integrable in a deep brain stimulation (DBS) electrode. DBS is a treatment for movement disorders where the position of the implant is of prime importance. Positioning challenges during the surgery could be addressed thanks to a magnetic tracking. The system proposed in this paper, complementary to existing procedures, has been designed to bridge preoperative clinical imaging with DBS surgery, allowing the surgeon to increase his/her control on the implantation trajectory. Here the magnetic source required for tracking consists of three coils, and is experimentally mapped. This mapping has been performed with an in-house three-dimensional magnetic camera. The system demonstrates how magnetometers integrated directly at the tip of a DBS electrode, might improve treatment by monitoring the position during and after the surgery. The three-dimensional operation without line of sight has been demonstrated using a reference obtained with magnetic resonance imaging (MRI) of a simplified brain model. We observed experimentally a mean absolute error of 1.35 mm and an Euclidean error of 3.07 mm. Several areas of improvement to target errors below 1 mm are also discussed.


Sign in / Sign up

Export Citation Format

Share Document