Multiscale System for Environmentally-Driven Infectious Disease with Threshold Control Strategy

2018 ◽  
Vol 28 (05) ◽  
pp. 1850064 ◽  
Author(s):  
Xiaodan Sun ◽  
Yanni Xiao

A multiscale system for environmentally-driven infectious disease is proposed, in which control measures at three different scales are implemented when the number of infected hosts exceeds a certain threshold. Our coupled model successfully describes the feedback mechanisms of between-host dynamics on within-host dynamics by employing one-scale variable guided enhancement of interventions on other scales. The modeling approach provides a novel idea of how to link the large-scale dynamics to small-scale dynamics. The dynamic behaviors of the multiscale system on two time-scales, i.e. fast system and slow system, are investigated. The slow system is further simplified to a two-dimensional Filippov system. For the Filippov system, we study the dynamics of its two subsystems (i.e. free-system and control-system), the sliding mode dynamics, the boundary equilibrium bifurcations, as well as the global behaviors. We prove that both subsystems may undergo backward bifurcations and the sliding domain exists. Meanwhile, it is possible that the pseudo-equilibrium exists and is globally stable, or the pseudo-equilibrium, the disease-free equilibrium and the real equilibrium are tri-stable, or the pseudo-equilibrium and the real equilibrium are bi-stable, or the pseudo-equilibrium and disease-free equilibrium are bi-stable, which depends on the threshold value and other parameter values. The global stability of the pseudo-equilibrium reveals that we may maintain the number of infected hosts at a previously given value. Moreover, the bi-stability and tri-stability indicate that whether the number of infected individuals tends to zero or a previously given value or other positive values depends on the parameter values and the initial states of the system. These results highlight the challenges in the control of environmentally-driven infectious disease.

Author(s):  
Abdelbasset Krama ◽  
Mohamed Gharib ◽  
Shady S. Refaat ◽  
Alan Palazzolo

Abstract This paper presents a novel controller for drill string systems based on a super-twisting sliding mode theory. The aim is to eliminate the stick-slip vibration and maintain a constant drill string velocity at the desired reference value. The proposed controller inherently attenuates the torsional vibration while ensuring the stability and high efficiency of the drill string. A discontinuous lumped-parameter torsional model of vertical drill strings based on four components (rotary table, drill pipes, drill collars and drill bit) is considered. The Karnopp friction model is adopted to simulate the nonlinear bit-rock interaction phenomena. In order to provide a more accurate evaluation, the proposed drill string controller is implemented with the induction motor, a variable frequency drive and a gearbox to closely mirror the real environment of oil well drill strings. The increasing demand for prototyping and testing high-power plants in realistic and safe environments has led to the advancement of new types of experimental investigations without hurting the real system or building a small-scale prototype for testing. The dynamic performance of the proposed controller has been investigated with MATLAB software as well as in a novel hardware in-the-loop (HIL) testing platform. A power plant is modeled and implemented in the real-time simulator OPAL-RT 5600, whereas the controllers are implemented in the dSPACE 1103 control board. The results obtained through simulation and HIL testing demonstrate the feasibility and high performance of the proposed controller.


Author(s):  
Kyosuke Ono

In order to elucidate contact and friction characteristics of rubbers, numerical analysis of asperity contact mechanics of a rubber piece with a smooth glass plate was carried out on the basis of an asperity contact model that considers van der Waal’s (vdW) pressure. First, by ignoring vdW pressure and the elastic deformation of the mean height surface, asperity contact characteristics were analyzed using the measured Young’s modulus, and surface parameter values that could yield the measured contact area were estimated. Next, asperity contact characteristics were analyzed by considering the vdW pressure and elastic deformation of a rough sphere that is a model of a large-scale asperity having small-scale asperities. It was found that the actual contact area was similar to the measured contact area; this result could not be obtained without assuming an rms asperity height of ∼0.1 μm for the small-scale asperities. It was also found that the friction coefficient decreased with an increase in the applied pressure in the cases where the friction force is proportional to the real area of contact and to the real internal contact pressure.


2012 ◽  
Vol 05 (03) ◽  
pp. 1260011 ◽  
Author(s):  
WEI-WEI SHI ◽  
YUAN-SHUN TAN

We develop an influenza pandemic model with quarantine and treatment, and analyze the dynamics of the model. Analytical results of the model show that, if basic reproduction number [Formula: see text], the disease-free equilibrium (DFE) is globally asymptotically stable, if [Formula: see text], the disease is uniformly persistent. The model is then extended to assess the impact of three anti-influenza control measures, precaution, quarantine and treatment, by re-formulating the model as an optimal control problem. We focus primarily on controlling disease with a possible minimal the systemic cost. Pontryagin's maximum principle is used to characterize the optimal levels of the three controls. Numerical simulations of the optimality system, using a set of reasonable parameter values, indicate that the precaution measure is more effective in reducing disease transmission than the other two control measures. The precaution measure should be emphasized.


2013 ◽  
Vol 21 (04) ◽  
pp. 1340007 ◽  
Author(s):  
MO'TASSEM AL-ARYDAH ◽  
ABUBAKAR MWASA ◽  
JEAN M. TCHUENCHE ◽  
ROBERT J. SMITH?

Cholera, characterized by severe diarrhea and rapid dehydration, is a water-borne infectious disease caused by the bacterium Vibrio cholerae. Haiti offers the most recent example of the tragedy that can befall a country and its people when cholera strikes. While cholera has been a recognized disease for two centuries, there is no strategy for its effective control. We formulate and analyze a mathematical model that includes two essential and affordable control measures: water chlorination and education. We calculate the basic reproduction number and determine the global stability of the disease-free equilibrium for the model without chlorination. We use Latin Hypercube Sampling to demonstrate that the model is most sensitive to education. We also derive the minimal effective chlorination period required to control the disease for both fixed and variable chlorination. Numerical simulations suggest that education is more effective than chlorination in decreasing bacteria and the number of cholera cases.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Youping Yang ◽  
Jingwen Wang

AbstractDepopulation of birds has been authenticated to be an effective measure in controlling avian influenza transmission. In this work, we establish a Filippov avian-only model incorporating a threshold policy control. We choose the index—the maximum between the infected threshold level $I_{T}$ I T and the product of the number of susceptible birds S and a ratio threshold value ξ—to decide on whether to trigger the control measures or not, which then leads to a discontinuous separation line and two pieces of sliding-mode domains. Meanwhile, one more sliding-mode domain gives birth to more complex dynamics. We investigate the global dynamical behavior of the Filippov model, including the real and/or virtual equilibria and the two sliding modes and their dynamics. The solutions will eventually stabilize at the real endemic equilibrium of the subsystem or the pseudoequilibria on the two sliding modes due to different threshold values. Therefore an effective and efficient threshold policy is essential to control the influenza by driving the number of infected birds below a certain level or at a previously given level.


Ubiquity ◽  
2021 ◽  
Vol 2021 (July) ◽  
pp. 1-12
Author(s):  
Walter Tichy

The most potent weapon against COVID-19 is a vaccine based on messenger RNA (mRNA). The first of these vaccines authorized for use was developed by the German company BioNTech in cooperation with Pfizer, closely followed by the (U.S.-produced) Moderna vaccine. These vaccines send a piece of mRNA into cells of a host. The mRNA instructs the cells to produce masses of the same spike protein that also occurs on the shell of the real coronavirus. The immune system responds by learning to destroy anything showing that protein: if the real virus arrives, the immune system will attack it immediately. This much has been reported widely by the media. But important questions remain. How is mRNA actually synthesized as a transcription of the spike-producing segment of the virus' RNA? How is the selection and replication done? How does mRNA enter a host cell, and how long will it stay there? Will it produce the spike protein forever? Is it perhaps dangerous? And the biggest question of all: How does the immune system record the structure of the foreign protein, how does it recognize the invader, and how is the immune response cranked up? To answer these questions, we bring you a conversation between Ubiquity editor Walter Tichy and his daughter Dr. Evelyn Tichy, an infectious disease expert.


2005 ◽  
Vol 14 (5) ◽  
pp. 580-596 ◽  
Author(s):  
Simon Lessels ◽  
Roy A. Ruddle

Two experiments investigated participants' ability to search for targets in a cluttered small-scale space. The first experiment was conducted in the real world with two field of view conditions (full vs. restricted), and participants found the task trivial to perform in both. The second experiment used the same search task but was conducted in a desktop virtual environment (VE), and investigated two movement interfaces and two visual scene conditions. Participants restricted to forward only movement performed the search task quicker and more efficiently (visiting fewer targets) than those who used an interface that allowed more flexible movement (forward, backward, left, right, and diagonal). Also, participants using a high fidelity visual scene performed the task significantly quicker and more efficiently than those who used a low fidelity scene. The performance differences among all the conditions decreased with practice, but the performance of the best VE group approached that of the real-world participants. These results indicate the importance of using high fidelity scenes in VEs, and suggest that the use of a simple control system is sufficient for maintaining one's spatial orientation during searching.


Author(s):  
Xingtian Chen ◽  
Wei Gong ◽  
Xiaoxu Wu ◽  
Wenwu Zhao

Background: The outbreak of the COVID-19 epidemic has caused an unprecedented public health crisis and drastically impacted the economy. The relationship between different control measures and economic losses becomes a research hotspot. Methods: In this study, the SEIR infectious disease model was revised and coupled with an economic model to quantify this nonlinear relationship in Wuhan. The control measures were parameterized into two factors: the effective number of daily contacts (people) (r); the average waiting time for quarantined patients (day) (g). Results: The parameter r has a threshold value that if r is less than 5 (people), the number of COVID-19 infected patients is very close to 0. A “central valley” around r = 5~6 can be observed, indicating an optimal control measure to reduce economic losses. A lower value of parameter g is beneficial to stop COVID-19 spread with a lower economic cost. Conclusion: The simulation results demonstrate that implementing strict control measures as early as possible can stop the spread of COVID-19 with a minimal economic impact. The quantitative assessment method in this study can be applied in other COVID-19 pandemic areas or countries.


2021 ◽  
Vol 6 (2) ◽  
pp. 83-88
Author(s):  
Asmaidi As Med ◽  
Resky Rusnanda

Mathematical modeling utilized to simplify real phenomena that occur in everyday life. Mathematical modeling is popular to modeling the case of the spread of disease in an area, the growth of living things, and social behavior in everyday life and so on. This type of research is included in the study of theoretical and applied mathematics. The research steps carried out include 1) constructing a mathematical model type SEIRS, 2) analysis on the SEIRS type mathematical model by using parameter values for conditions 1and , 3) Numerical simulation to see the behavior of the population in the model, and 4) to conclude the results of the numerical simulation of the SEIRS type mathematical model. The simulation results show that the model stabilized in disease free quilibrium for the condition  and stabilized in endemic equilibrium for the condition .


Sign in / Sign up

Export Citation Format

Share Document