APPLICATION OF DISCRETE CHAOTIC DYNAMICAL SYSTEMS IN CRYPTOGRAPHY — DCC METHOD

1999 ◽  
Vol 09 (06) ◽  
pp. 1121-1135 ◽  
Author(s):  
ZBIGNIEW KOTULSKI ◽  
JANUSZ SZCZEPAŃSKI ◽  
KAROL GÓRSKI ◽  
ANDRZEJ PASZKIEWICZ ◽  
ANNA ZUGAJ

In the paper we propose a method of constructing cryptosystems, utilizing a nonpredictability property of discrete chaotic systems. We point out the requirements for such systems to ensure their security. The presented algorithms of encryption and decryption are based on multiple iteration of a certain dynamical chaotic system coming from gas dynamics models. A plaintext message specifies a part of the initial condition of the system (a particle's initial position). A secret key specifies the remaining part of initial condition (the particle's initial angle) as well as a sequence of discrete choices of the pre-images in the encryption procedure. We also discuss problems connected with the practical realization of such chaotic cryptosystems. Finally we demonstrate numerical experiments illustrating the basic properties of the proposed cryptosystem.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Beatrice Da Lio ◽  
Daniele Cozzolino ◽  
Nicola Biagi ◽  
Yunhong Ding ◽  
Karsten Rottwitt ◽  
...  

AbstractQuantum key distribution (QKD) protocols based on high-dimensional quantum states have shown the route to increase the key rate generation while benefiting of enhanced error tolerance, thus overcoming the limitations of two-dimensional QKD protocols. Nonetheless, the reliable transmission through fiber links of high-dimensional quantum states remains an open challenge that must be addressed to boost their application. Here, we demonstrate the reliable transmission over a 2-km-long multicore fiber of path-encoded high-dimensional quantum states. Leveraging on a phase-locked loop system, a stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of a secret key rate.


2014 ◽  
Vol 984-985 ◽  
pp. 1357-1363
Author(s):  
M. Vinothini ◽  
M. Manikandan

During real time there are problems in transmitting video directly to the client. One of the main problems is, intermediate intelligent proxy can easily hack the data as the transmitter fails to address authentication, and fails to provide security guarantees. Hence we provide steganography and cryptography mechanisms like secure-code, IP address and checksum for authentication and AES algorithm with secret key for security. Although the hacker hacks the video during transmission, he cannot view the information. Based on IP address and secure-code, the authenticated user only can get connected to the transmitter and view the information. For further improvement in security, the video is converted into frames and these frames are split into groups and separate shared key is applied to each group of frames for encryption and decryption. This secured communication process is applied in image processing modules like face detection, edge detection and color object detection. To reduce the computation time multi-core CPU processing is utilized. Using multi-core, the tasks are processed in parallel fashion.


2019 ◽  
Vol 8 (1) ◽  
pp. 2
Author(s):  
Mehdi Lotfi ◽  
Hossein Kheiri ◽  
Azizeh Jabbari

Introduction:  In this paper, an encryption algorithm for the security of medical images is presented, which has extraordinary security. Given that the confidentiality of patient data is one of the priorities of medical informatics, the algorithm can be used to store and send medical image.Material and Methods:  In this paper, the solutions of chaotic differential equations are used to generate encryption keys. This method is more than other methods used in encoding medical images, resistant to statistics attacks, low encryption and decryption time and very high key space. In the proposed algorithm, unlike other methods that use random key generation, this method uses the production of solutions of the chaotic differential equations in a given time period for generating a key. All simulations and coding are done in MATLAB software.Results:   Chaotic Differential Equations have two very important features that make it possible to encode medical images. One is the unpredictability of the system's behavior and the other is a severe sensitivity to the initial condition.Conclusion: These two features make the method resistant to possible attacks to decode the concept of synchronization chaotic systems. Using the results of the method, medical information can be made safer than existing ones.


2020 ◽  
Vol 8 (4) ◽  
pp. 475
Author(s):  
Maria Okta Safira ◽  
I Komang Ari Mogi

In this paper two methods are used, namely the vigenere cipher method and the RSA method. The vigenere cipher method is an example of a symmetric algorithm, while RSA is an example of an asymmetric algorithm. The combination of these two methods is called hybrid cryptography which has the advantage in terms of speed during the encryption process. Each process, which is encryption and decryption, is carried out twice, so that security can be ensured. In the process of forming the key used the RSA method. In the encryption process using public keys that have been generated before when the key is formed. This public key is used in sending data to the recipient of a secret message where this key is used for the data encryption process. The Secret key is kept and will be used during the decryption process. There is a system architecture that describes how clients and servers communicate with each other over the internet using the TCP protocol where the client here is an IoT device and the server is a server. 


Author(s):  
Alain Giresse Tene ◽  
Timoleon Crépin Kofane

Synchronization of fractional-order-derivative systems for cryptography purpose is still exploratory and despite an increase in cryptography research, several challenges remain in designing a powerful cryptosystem. This chapter addresses the problem of synchronization of fractional-order-derivative chaotic systems using random numbers generator for a novel technique to key distribution in cryptography. However, there is evidence that researchers have approached the problem using integer order derivative chaotic systems. Consequently, the aim of the chapter lies in coding and decoding a text via chaos synchronization of fractional-order derivative, the performance analysis and the key establishment scheme following an application on a text encryption using the chaotic Mathieu-Van Der Pol fractional system. In order to improve the level of the key security, the Fibonacci Q-matrix is used in the key generation process and the initial condition; the order of the derivative of the responder system secretly shared between the responder and the receiver are also involved. It followed from this study that compared to the existing cryptography techniques, this proposed method is found to be very efficient due to the fact that, it improves the key security.


2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Junhai Ma ◽  
Yun Feng

Based on the work of domestic and foreign scholars and the application of chaotic systems theory, this paper presents an investigation simulation of retailer's demand and stock. In simulation of the interaction, the behavior of the system exhibits deterministic chaos with consideration of system constraints. By the method of space's reconstruction, the maximal Lyapunov exponent of retailer's demand model was calculated. The result shows the model is chaotic. By the results of bifurcation diagram of model parameters , and changing initial condition, the system can be led to chaos.


1997 ◽  
Vol 07 (10) ◽  
pp. 2175-2197 ◽  
Author(s):  
Celso Grebogi ◽  
Ying–Cheng Lai ◽  
Scott Hayes

This review describes a procedure for stabilizing a desirable chaotic orbit embedded in a chaotic attractor of dissipative dynamical systems by using small feedback control. The key observation is that certain chaotic orbits may correspond to a desirable system performance. By carefully selecting such an orbit, and then applying small feedback control to stabilize a trajectory from a random initial condition around the target chaotic orbit, desirable system performance can be achieved. As applications, three examples are considered: (1) synchronization of chaotic systems; (2) conversion of transient chaos into sustained chaos; and (3) controlling symbolic dynamics for communication. The first and third problems are potentially relevant to communication in engineering, and the solution of the second problem can be applied to electrical power systems to avoid catastrophic events such as the voltage collapse.


Author(s):  
V Goutham Bharadwaja ◽  
Yashas M S ◽  
Yathendra Yadav T V ◽  
Gelvesh G

Security is a crucial side to preserve the confidentiality of information such as pictures and text. The probability of an assailant attempting to access the image in the course of transferring process is high as assailant may get hold of important data. Therefore, encryption methods are used for securing the data. A novel image encryption algorithm that is a combination of the AES algorithm and the chaos sequence is proposed in this paper. The project will use AES for encryption and decryption of the image transfer because AES is capable of solving problem that cannot be resolved by different algorithms. The original image is transformed into cipher-image using a share secret key and this process is called encryption while the reverse of encryption process is known as decryption. This method’s sensitivity to the initial values and input image, even the tiniest changes within these values will result in significant changes in the encrypted image. We show that this approach can shield the image against different attacks exploitation using histogram analysis.


2021 ◽  
Vol 58 (1) ◽  
pp. 3420-3427
Author(s):  
P. A. S. D. Perera, G. S . Wijesiri

The present-day society depends heavily on digital technology where it is used in many applications such as banking and e-commerce transactions, computer passwords, etc. Therefore, it is important to protect information when storing and sharing them. Cryptography is the study of secret writing which applies complex math rules to convert the original message into an incomprehensible form.  Graph theory is applied in the field of cryptography as graphs can be simply converted into matrices There are two approaches of cryptography; symmetric cryptography and asymmetric cryptography. This paper proposes a new connection between graph theory and symmetric cryptography to protect the information from the unauthorized parties. This proposed methodology uses a matrix as the secret key which adds more security to the cryptosystem. It converts the plaintext into several graphs and represents these graphs in their matrix form. Also, this generates several ciphertexts. The size of the resulting ciphertexts are larger than the plaintext size.


Author(s):  
Jun Peng ◽  
Shangzhu Jin ◽  
Shaoning Pang ◽  
Du Zhang ◽  
Lixiao Feng ◽  
...  

For a security system built on symmetric-key cryptography algorithms, the substitution box (S-box) plays a crucial role to resist cryptanalysis. In this article, we incorporate quantum chaos and PWLCM chaotic map into a new method of S-box design. The secret key is transformed to generate a six tuple system parameter, which is involved in the generation process of chaotic sequences of two chaotic systems. The output of one chaotic system will disturb the parameters of another chaotic system in order to improve the complexity of encryption sequence. S-box is obtained by XOR operation of the output of two chaotic systems. Over the obtained 500 key-dependent S-boxes, we test the S-box cryptographical properties on bijection, nonlinearity, SAC, BIC, differential approximation probability, respectively. Performance comparison of proposed S-box with those chaos-based one in the literature has been made. The results show that the cryptographic characteristics of proposed S-box has met our design objectives and can be applied to data encryption, user authentication and system access control.


Sign in / Sign up

Export Citation Format

Share Document