scholarly journals Gravitational lensing study of cold dark matter-led galactic halo

Author(s):  
Samrat Ghosh ◽  
Arunava Bhadra ◽  
Amitabha Mukhopadhyay

In this work, the spacetime geometry of the halo region in spiral galaxies is obtained considering the observed flat galactic rotation curve feature, invoking the Tully–Fisher relation and assuming the presence of cold dark matter in the galaxy. The gravitational lensing analysis is performed treating the so-obtained spacetime as a gravitational lens. It is found that the aforementioned spacetime as the gravitational lens can consistently explain the galaxy–galaxy weak gravitational lensing observations and the lensing observations of the well-known Abell 370 and Abell 2390 galaxy clusters.

2017 ◽  
Vol 26 (09) ◽  
pp. 1750095 ◽  
Author(s):  
Satoshi Tsuchida ◽  
Masaki Mori

The lightest Kaluza–Klein particle (LKP), which appears in the theory of universal extra dimensions (UED), is one of the good candidates for cold dark matter (CDM). When LKP pairs annihilate around the center of the Galaxy where CDM is concentrated, there are some modes which produce electrons and positrons as final products, and we categorize them into two components. One of them is the “line” component, which directly annihilates into electron–positron pair. Another one is the “continuum” component, which consists of secondarily produced electrons and positrons via some decay modes. Before reaching Earth, directions of electrons and positrons are randomized by the Galactic magnetic field, and their energies are reduced by energy loss mechanisms. We assume the LKP is in the mass range from 300[Formula: see text]GeV to 1500[Formula: see text]GeV. We calculate the electron plus positron spectrum after propagation in the Galactic halo to Earth, and we analyze the resulting spectrum and positron fraction. We also point out that the energy dependence of observed positron fraction is well reproduced by the mixture of “line” and “continuum” components. We can fit the electron plus positron spectrum and the positron fraction by assuming appropriate boost factors describing dark matter concentration in the Galactic halo. However, it is difficult to explain both the electron plus positron spectrum and the positron fraction by a single boost factor if we take account of observational data obtained by AMS-02 only.


1987 ◽  
Vol 117 ◽  
pp. 490-490
Author(s):  
A. K. Drukier ◽  
K. Freese ◽  
D. N. Spergel

We consider the use of superheated superconducting colloids as detectors of weakly interacting galactic halo candidate particles (e.g. photinos, massive neutrinos, and scalar neutrinos). These low temperature detectors are sensitive to the deposition of a few hundreds of eV's. The recoil of a dark matter particle off of a superheated superconducting grain in the detector causes the grain to make a transition to the normal state. Their low energy threshold makes this class of detectors ideal for detecting massive weakly interacting halo particles.We discuss realistic models for the detector and for the galactic halo. We show that the expected count rate (≈103 count/day for scalar and massive neutrinos) exceeds the expected background by several orders of magnitude. For photinos, we expect ≈1 count/day, more than 100 times the predicted background rate. We find that if the detector temperature is maintained at 50 mK and the system noise is reduced below 5 × 10−4 flux quanta, particles with mass as low as 2 GeV can be detected. We show that the earth's motion around the Sun can produce a significant annual modulation in the signal.


2020 ◽  
Vol 494 (4) ◽  
pp. 4706-4712 ◽  
Author(s):  
Andrew Robertson ◽  
Richard Massey ◽  
Vincent Eke

ABSTRACT We assess a claim that observed galaxy clusters with mass ${\sim}10^{14} \mathrm{\, M_\odot }$ are more centrally concentrated than predicted in lambda cold dark matter (ΛCDM). We generate mock strong gravitational lensing observations, taking the lenses from a cosmological hydrodynamical simulation, and analyse them in the same way as the real Universe. The observed and simulated lensing arcs are consistent with one another, with three main effects responsible for the previously claimed inconsistency. First, galaxy clusters containing baryonic matter have higher central densities than their counterparts simulated with only dark matter. Secondly, a sample of clusters selected because of the presence of pronounced gravitational lensing arcs preferentially finds centrally concentrated clusters with large Einstein radii. Thirdly, lensed arcs are usually straighter than critical curves, and the chosen image analysis method (fitting circles through the arcs) overestimates the Einstein radii. After accounting for these three effects, ΛCDM predicts that galaxy clusters should produce giant lensing arcs that match those in the observed Universe.


2008 ◽  
Vol 4 (S254) ◽  
pp. 179-190 ◽  
Author(s):  
Rosemary F. G. Wyse

AbstractI discuss how the chemical abundance distributions, kinematics and age distributions of stars in the thin and thick disks of the Galaxy can be used to decipher the merger history of the Milky Way, a typical large galaxy. The observational evidence points to a rather quiescent past merging history, unusual in the context of the ‘consensus’ cold-dark-matter cosmology favoured from observations of structure on scales larger than individual galaxies.


2021 ◽  
Vol 650 ◽  
pp. A113
Author(s):  
Margot M. Brouwer ◽  
Kyle A. Oman ◽  
Edwin A. Valentijn ◽  
Maciej Bilicki ◽  
Catherine Heymans ◽  
...  

We present measurements of the radial gravitational acceleration around isolated galaxies, comparing the expected gravitational acceleration given the baryonic matter (gbar) with the observed gravitational acceleration (gobs), using weak lensing measurements from the fourth data release of the Kilo-Degree Survey (KiDS-1000). These measurements extend the radial acceleration relation (RAR), traditionally measured using galaxy rotation curves, by 2 decades in gobs into the low-acceleration regime beyond the outskirts of the observable galaxy. We compare our RAR measurements to the predictions of two modified gravity (MG) theories: modified Newtonian dynamics and Verlinde’s emergent gravity (EG). We find that the measured relation between gobs and gbar agrees well with the MG predictions. In addition, we find a difference of at least 6σ between the RARs of early- and late-type galaxies (split by Sérsic index and u − r colour) with the same stellar mass. Current MG theories involve a gravity modification that is independent of other galaxy properties, which would be unable to explain this behaviour, although the EG theory is still limited to spherically symmetric static mass models. The difference might be explained if only the early-type galaxies have significant (Mgas ≈ M⋆) circumgalactic gaseous haloes. The observed behaviour is also expected in Λ-cold dark matter (ΛCDM) models where the galaxy-to-halo mass relation depends on the galaxy formation history. We find that MICE, a ΛCDM simulation with hybrid halo occupation distribution modelling and abundance matching, reproduces the observed RAR but significantly differs from BAHAMAS, a hydrodynamical cosmological galaxy formation simulation. Our results are sensitive to the amount of circumgalactic gas; current observational constraints indicate that the resulting corrections are likely moderate. Measurements of the lensing RAR with future cosmological surveys (such as Euclid) will be able to further distinguish between MG and ΛCDM models if systematic uncertainties in the baryonic mass distribution around galaxies are reduced.


2019 ◽  
Vol 34 (27) ◽  
pp. 1950218
Author(s):  
S. C. Ulhoa ◽  
F. L. Carneiro

In this paper, the galactic rotation curve is analyzed as an effect of an accelerated reference frame. Such a rotation curve was the first evidence for the so-called dark matter. We show another possibility for this experimental data: non-inertial reference frame can fit the experimental curve. We also show that general relativity is not enough to completely explain that which encouraged alternatives paths such as the MOND approach. The accelerated reference frames hypothesis is well-suited to deal with the rotation curve of galaxies and perhaps has some role to play concerning other evidences for dark matter.


2019 ◽  
Vol 631 ◽  
pp. A40 ◽  
Author(s):  
S. Schuldt ◽  
G. Chirivì ◽  
S. H. Suyu ◽  
A. Yıldırım ◽  
A. Sonnenfeld ◽  
...  

We present a detailed analysis of the inner mass structure of the Cosmic Horseshoe (J1148+1930) strong gravitational lens system observed with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3). In addition to the spectacular Einstein ring, this systems shows a radial arc. We obtained the redshift of the radial arc counterimage zs, r = 1.961 ± 0.001 from Gemini observations. To disentangle the dark and luminous matter, we considered three different profiles for the dark matter (DM) distribution: a power law profile, the Navarro, Frenk, and White (NFW) profile, and a generalized version of the NFW profile. For the luminous matter distribution, we based the model on the observed light distribution that is fitted with three components: a point mass for the central light component resembling an active galactic nucleus, and the remaining two extended light components scaled by a constant mass-to-light ratio (M/L). To constrain the model further, we included published velocity dispersion measurements of the lens galaxy and performed a self-consistent lensing and axisymmetric Jeans dynamical modeling. Our model fits well to the observations including the radial arc, independent of the DM profile. Depending on the DM profile, we get a DM fraction between 60% and 70%. With our composite mass model we find that the radial arc helps to constrain the inner DM distribution of the Cosmic Horseshoe independently of the DM profile.


1996 ◽  
Vol 173 ◽  
pp. 175-176
Author(s):  
K.C. Freeman

From their rotation curves, most spiral galaxies appear to have massive dark coronas. The inferred masses of these dark coronas are typically 5 to 10 times the mass of the underlying stellar component. I will review the evidence that our Galaxy also has a dark corona. Our position in the galactic disk makes it difficult to measure the galactic rotation curve beyond about 20 kpc from the galactic center. However it does allow several other indicators of the total galactic mass out to very large distances. It seems clear that the Galaxy does indeed have a massive dark corona. The data indicate that the enclosed mass within radius R increases like M(R) ≈ R(kpc) × 1010M⊙, out to a radius of more than 100 kpc. The total galactic mass is at least 12 × 1011M⊙.


2019 ◽  
Vol 34 (23) ◽  
pp. 1950188
Author(s):  
Nayan Sarkar ◽  
Susmita Sarkar ◽  
Farook Rahaman ◽  
P. K. F. Kuhfittig ◽  
G. S. Khadekar

It is well-known that traversable wormholes are valid solutions of the Einstein field equations, but these structures can only be maintained by violating the null energy condition. In this paper, we have obtained such wormhole solutions in an isothermal galactic halo, as well as in a void. We have shown that the null energy condition is violated, with the help of a suitable redshift function obtained from flat galactic rotation curves.


Recent observational and theoretical results on galaxy clustering are reviewed. A major difficulty in relating observations to theory is that the former refer to luminous material whereas the latter is most directly concerned with the gravitationally dominant but invisible dark matter. The simple assumption that the distribution of galaxies generally follows that of the mass appears to conflict with evidence suggesting that galaxies of different kinds are clustered in different ways. If galaxies are indeed biased tracers of the mass, then dynamical estimates of the mean cosmic density, which give Ω « 0.2 may underestimate the global value of Ω. There are now several specific models for the behaviour of density fluctuations from very early times to the present epoch. The late phases of this evolution need to be followed by N -body techniques; simulations of scale-free universes and of universes dominated by various types of elementary particles are discussed. In the former case, the models evolve in a self-similar way; the resulting correlations have a steeper slope than that oberved for the galaxy distribution unless the primordial power spectral index n « 2. Universes dominated by light neutrinos acquire a large coherence length at early times. As a result, an early filamentary phase develops into a present day distribution that is more strongly clustered than observed galaxies and is dominated by a few clumps with masses larger than those of any known object. If the dark matter consists of ‘cold’ particles such as photinos or axions, then structure builds up from subgalactic scales in a roughly hierarchical way. The observed pattern of galaxy clustering can be reproduced if either Ω « 0.2 and the galaxies are distributed as the mass, or if Ω — 1, H 0 = 50 km s -1 Mpc -1 and the galaxies form only at high peaks of the smoothed linear density field. The open model, however, is marginally ruled out by the observed small-scale isotropy of the microwave background, whereas the flat one is consistent with such observations. With no further free parameters a flat cold dark-matter universe produces the correct abundance of rich galaxy clusters and of galactic halos; the latter have flat rotation curves with amplitudes spanning the observed range. Preliminary calculations indicate that the properties of voids may be consistent with the data, but the correlations of rich clusters appear to be somewhat weaker than those reported for Abell clusters.


Sign in / Sign up

Export Citation Format

Share Document