A STUDY OF SCHISTOSOME TRANSMISSION DYNAMICS AND ITS CONTROL

2006 ◽  
Vol 14 (02) ◽  
pp. 295-302 ◽  
Author(s):  
PRASENJIT DAS ◽  
DEBASIS MUKHERJEE ◽  
A. K. SARKAR

This article concentrates on the study of delay effect on a model of schistosomiasis transmission with control measures such as predation or harvesting and chemotherapy. In the presence of predation or harvesting and chemotherapy, system admits multiple endemic equilibria. Mathematical analysis shows that they are opposite in nature regarding stability. One may observe switching phenomena for the unstable equilibrium by incorporating delay. The disease may be highly endemic if there is no control measure, which is obvious from the model analysis. Results obtained in this paper are also verified through numerical simulations.

2017 ◽  
Vol 25 (03) ◽  
pp. 369-397 ◽  
Author(s):  
PARIMITA ROY ◽  
RANJIT KUMAR UPADHYAY

In this paper, we have formulated a compartmental epidemic model with exponentially decaying transmission rates to understand the Ebola transmission dynamics and study the impact of control measures to basic public health. The epidemic model exhibits two equilibria, namely, the disease-free and unique endemic equilibria. We have calculated the basic reproduction number through next generation matrix and investigated the spatial spread of the epidemic via reaction–diffusion modeling. Instead of fitting the model to the observed pattern of spread, we have used previously estimated parameter values and examined the efficacy of predictions of the designed model vis-à-vis the pattern of spread observed in Sierra Leone, West Africa. Further, we conducted a sensitivity analysis to determine the extent to which improvement in predictions is achievable through better parameterization.We performed numerical simulations with and without control measure for the designed model system. A significant reduction in infection and death cases were observed when proper control measures are incorporated in the model system. Two-dimensional simulation experiments show that infectious population and the number of deaths will increase up to one and a half years without control, but it will decline after two years. We have reported the numerical results, and it closely matches with the real situation in Sierra Leone.


2020 ◽  
Author(s):  
Chong You ◽  
Xin Gai ◽  
Yuan Zhang ◽  
Xiao-Hua Zhou

Abstract The current outbreak of coronavirus disease 2019 (COVID-19) has quickly spread across countries and become a global crisis. Understanding the transmission mechanism and effects of interventions is critical to the prevention and control of the COVID-19 pandemic. A recent study by Hao et al (2020) provided an interesting perspective on the transmission dynamics of COVID-19 in Wuhan and inferred that 87% of the infections before 8 March 2020 were not laboratory-confirmed. However we believe that there are a few major issues due to the vagueness in the definitions of compartments and inconsistence in the settings of parameters. In this paper, we clarify the definitions of the model compartments and raise questions in regard to the underlying homogenous assumption within compartments and settings of the parameters in the dynamic model by Hao et al (2020), and furthermore offer a modified model to resolve these potential limitations. Compared with the model in Hao et al (2020), the active virus carriers were predicted to persist for a longer period in our model which is well consistent with the active virus carriers detected in Wuhan in mid-May. Our model suggests that control measures cannot be easily lifted while continuous efforts are needed to contain the spread of the pandemic; a universal PT-PCR screening is essential to detect hidden cases before lifting control measure. In addition, we also provide a possible solution to solve the problem of heterogeneity transmission rate in disease courses.


2020 ◽  
Author(s):  
Lukman Olagoke ◽  
Ahmet E. Topcu

BACKGROUND COVID-19 represents a serious threat to both national health and economic systems. To curb this pandemic, the World Health Organization (WHO) issued a series of COVID-19 public safety guidelines. Different countries around the world initiated different measures in line with the WHO guidelines to mitigate and investigate the spread of COVID-19 in their territories. OBJECTIVE The aim of this paper is to quantitatively evaluate the effectiveness of these control measures using a data-centric approach. METHODS We begin with a simple text analysis of coronavirus-related articles and show that reports on similar outbreaks in the past strongly proposed similar control measures. This reaffirms the fact that these control measures are in order. Subsequently, we propose a simple performance statistic that quantifies general performance and performance under the different measures that were initiated. A density based clustering of based on performance statistic was carried out to group countries based on performance. RESULTS The performance statistic helps evaluate quantitatively the impact of COVID-19 control measures. Countries tend show variability in performance under different control measures. The performance statistic has negative correlation with cases of death which is a useful characteristics for COVID-19 control measure performance analysis. A web-based time-line visualization that enables comparison of performances and cases across continents and subregions is presented. CONCLUSIONS The performance metric is relevant for the analysis of the impact of COVID-19 control measures. This can help caregivers and policymakers identify effective control measures and reduce cases of death due to COVID-19. The interactive web visualizer provides easily digested and quick feedback to augment decision-making processes in the COVID-19 response measures evaluation. CLINICALTRIAL Not Applicable


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1272
Author(s):  
Fengsheng Chien ◽  
Stanford Shateyi

This paper studies the global stability analysis of a mathematical model on Babesiosis transmission dynamics on bovines and ticks populations as proposed by Dang et al. First, the global stability analysis of disease-free equilibrium (DFE) is presented. Furthermore, using the properties of Volterra–Lyapunov matrices, we show that it is possible to prove the global stability of the endemic equilibrium. The property of symmetry in the structure of Volterra–Lyapunov matrices plays an important role in achieving this goal. Furthermore, numerical simulations are used to verify the result presented.


Author(s):  
Francis Mugabi ◽  
Joseph Mugisha ◽  
Betty Nannyonga ◽  
Henry Kasumba ◽  
Margaret Tusiime

AbstractThe problem of foot and mouth disease (FMD) is of serious concern to the livestock sector in most nations, especially in developing countries. This paper presents the formulation and analysis of a deterministic model for the transmission dynamics of FMD through a contaminated environment. It is shown that the key parameters that drive the transmission of FMD in a contaminated environment are the shedding, transmission, and decay rates of the virus. Using numerical results, it is depicted that the host-to-host route is more severe than the environmental-to-host route. The model is then transformed into an optimal control problem. Using the Pontryagin’s Maximum Principle, the optimality system is determined. Utilizing a gradient type algorithm with projection, the optimality system is solved for three control strategies: optimal use of vaccination, environmental decontamination, and a combination of vaccination and environmental decontamination. Results show that a combination of vaccination and environmental decontamination is the most optimal strategy. These results indicate that if vaccination and environmental decontamination are used optimally during an outbreak, then FMD transmission can be controlled. Future studies focusing on the control measures for the transmission of FMD in a contaminated environment should aim at reducing the transmission and the shedding rates, while increasing the decay rate.


2021 ◽  
Vol 83 (4) ◽  
Author(s):  
Sebastian Aniţa ◽  
Vincenzo Capasso ◽  
Simone Scacchi

AbstractIn a recent paper by one of the authors and collaborators, motivated by the Olive Quick Decline Syndrome (OQDS) outbreak, which has been ongoing in Southern Italy since 2013, a simple epidemiological model describing this epidemic was presented. Beside the bacterium Xylella fastidiosa, the main players considered in the model are its insect vectors, Philaenus spumarius, and the host plants (olive trees and weeds) of the insects and of the bacterium. The model was based on a system of ordinary differential equations, the analysis of which provided interesting results about possible equilibria of the epidemic system and guidelines for its numerical simulations. Although the model presented there was mathematically rather simplified, its analysis has highlighted threshold parameters that could be the target of control strategies within an integrated pest management framework, not requiring the removal of the productive resource represented by the olive trees. Indeed, numerical simulations support the outcomes of the mathematical analysis, according to which the removal of a suitable amount of weed biomass (reservoir of Xylella fastidiosa) from olive orchards and surrounding areas resulted in the most efficient strategy to control the spread of the OQDS. In addition, as expected, the adoption of more resistant olive tree cultivars has been shown to be a good strategy, though less cost-effective, in controlling the pathogen. In this paper for a more realistic description and a clearer interpretation of the proposed control measures, a spatial structure of the epidemic system has been included, but, in order to keep mathematical technicalities to a minimum, only two players have been described in a dynamical way, trees and insects, while the weed biomass is taken to be a given quantity. The control measures have been introduced only on a subregion of the whole habitat, in order to contain costs of intervention. We show that such a practice can lead to the eradication of an epidemic outbreak. Numerical simulations confirm both the results of the previous paper and the theoretical results of the model with a spatial structure, though subject to regional control only.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Kamel Kamal Sabet ◽  
Magdy Mohamed Saber ◽  
Mohamed Adel-Aziz El-Naggar ◽  
Nehal Samy El-Mougy ◽  
Hatem Mohamed El-Deeb ◽  
...  

Five commercial composts were evaluated to suppress the root-rot pathogens (Fusarium solani (Mart.) App. and Wr, Pythium ultimum Trow, Rhizoctonia solani Kuhn, and Sclerotium rolfsii Sacc.) of cucumber plants under in vitro and greenhouse conditions. In vitro tests showed that all tested unautoclaved and unfiltrated composts water extracts (CWEs) had inhibitor effect against pathogenic fungi, compared to autoclaved and filtrated ones. Also, the inhibitor effects of 40 bacteria and 15 fungi isolated from composts were tested against the mycelial growth of cucumber root-rot pathogens. Twenty two bacteria and twelve fungal isolates had antagonistic effect against root-rot pathogens. The antagonistic fungal isolates were identified as 6 isolates belong to the genus Aspergillus spp., 5 isolates belong to the genus Penicillium spp. and one isolate belong to the genus Chaetomium spp. Under greenhouse conditions, the obtained results in pot experiment using artificial infested soil with cucumber root-rot pathogens showed that the compost amended soil reduced the percentage of disease incidence, pathogenic fungi population, and improved the cucumber vegetative parameters as shoot length, root length, fresh weight, and dry weight. These results suggested that composts are consequently considered as control measure against cucumber root-rot pathogens.


Author(s):  
O.V. Shinkareva ◽  
V.A. Dikikh

The article is devoted to the analysis of the types of control measures that will be carried out in accordance with Federal Law No. 248-FZ of the “On State Control (Supervision) and Municipal Control in the Russian Federation”, the main provisions of which will enter into force on July 1, 2021. This law also applies to the activities of organizations that are subject to licensing. Types of control (supervisory) measures are considered, in particular, control and monitoring procurement, inspection visit, raid inspection, documentary and field inspection, as well as monitoring compliance with mandatory requirements and field examination. The essence of each type of control measure, the basis for carrying out the measures, control actions that can be used in their implementation are analyzed.


2005 ◽  
Vol 37 (6) ◽  
pp. 761-771 ◽  
Author(s):  
JOSEPH KEATING ◽  
KATE MACINTYRE ◽  
CHARLES M. MBOGO ◽  
JOHN I. GITHURE ◽  
JOHN C. BEIER

A geographically stratified cross-sectional survey was conducted in 2002 to investigate household-level factors associated with use of mosquito control measures and self-reported malaria in Malindi, Kenya. A total of 629 households were surveyed. Logistic regressions were used to analyse the data. Half of all households (51%) reported all occupants using an insecticide-treated bed net and at least one additional mosquito control measure such as insecticides or removal of standing water. Forty-nine per cent reported a history of malaria in the household. Of the thirteen household factors analysed, low (OR=0·23, CI 0·11, 0·48) and medium (OR=0·50, CI 0·29, 0·86) education, mud–wood–coral (OR=0·0·39, CI 0·24, 0·66) and mud block–plaster (OR=0·47, CI 0·25, 0·87) wall types, farming (OR=1·38, CI 1·01, 1·90) and travel to rural areas (OR=0·48, CI 0·26, 0·91) were significantly associated with the use of mosquito control, while controlling for other covariates in the model. History of reported malaria was not associated with the use of mosquito control (OR=1·22, CI 0·79, 1·88). Of the thirteen covariates analysed in the second model, only two household factors were associated with history of malaria: being located in the well-drained stratum (OR=0·49, CI 0·26, 0·96) and being bitten while in the house (OR=1·22, CI 0·19, 0·49). These results suggest that high socioeconomic status is associated with increased household-level mosquito control use, although household-level control may not be enough, as many people are exposed to biting mosquitoes while away from the house and in areas that are more likely to harbour mosquitoes.


Sign in / Sign up

Export Citation Format

Share Document