EFFECT OF LEAD CHLORIDE ON THE GROWTH AND SURFACE PROPERTIES OF POTASSIUM CHLORIDE CRYSTALS FROM AQUEOUS SOLUTIONS

2014 ◽  
Vol 21 (04) ◽  
pp. 1450044 ◽  
Author(s):  
JIBAN PODDER ◽  
RICHARD WILLIAM EVITTS ◽  
ROBERT WILLIAM BESANT

Pure potassium chloride ( KCl ) and lead chloride ( PbCl 2)-doped KCl crystals were grown from saturated aqueous solutions by a solvent evaporation process. The effects of Pb 2+ on the surface morphology, structural and mechanical properties of KCl crystal were investigated. The surface morphology of the cubic structured crystals was studied by scanning electron microscopy (SEM), X-ray diffraction and the elemental mappings at the microstructural level were determined by energy dispersive X-ray (EDX) spectroscopy. The mass growth rate was found to decrease when the Pb 2+ ions were present and the volume growth flux was also found to decrease with time and initial concentration of impurity. A Vickers micro-hardness study shows that Pb -doped KCl crystals are harder than pure KCl crystals.

2016 ◽  
Vol 840 ◽  
pp. 331-335
Author(s):  
Nur Amira Mohd Rabani ◽  
Zakiah Kamdi

Cemented tungsten carbides have been paid much attention due its better mechanical properties with excellent combination of hardness and toughness characteristics. The hard WC particles in the coating provide hardness and wear resistance, while the ductile binder such as Co and Ni contribute to toughness and strength. WC-17wt.% Co and WC-9wt.% Ni powders have been sprayed by the HVOF method to form coatings approximately 300μm and 150μm thick onto AISI 1018 steel substrate. Both coatings have been prepared and supplied by an external vendor. The coatings were examined using optical microscope (OM), scanning electron microscope (SEM), and X-Ray diffraction (XRD). The hardness of both coatings were also measured using Vickers micro-hardness tester. The microstructure of the coatings has been analyzed and found to consist of WC, brittle W2C phase, metallic W phase, and amorphous binder phase of Co and Ni. It is found that WC-Ni has a higher hardness value compared to WC-Co due to high porosity distribution.


2018 ◽  
Vol 96 (7) ◽  
pp. 810-815 ◽  
Author(s):  
Celal Kursun ◽  
Musa Gogebakan ◽  
Yunus Azakli ◽  
Sezgin Cengiz ◽  
Hasan Eskalen ◽  
...  

In this work, Mg65Ni20Y15–XAgX (X = 1, 2, 3, 5) alloys were manufactured by atmosphere controlled induction system. The effect of Ag ratio on the microstructural properties, micro-hardness, density, and homogeneity of the Mg–Ni–Y alloys were investigated. These alloys were characterized by X-ray diffraction (XRD), optical microscopy, scanning electron microscopy with energy dispersive X-ray (SEM-EDX) and Vickers micro-hardness measurement. According to XRD results, Ni3Y and Mg6Ni phases were observed as well as AgY and Ag17Mg54 phases, which were obtained in alloys. The quantitative results of EDX analysis confirm that the chemical composition of the obtained phases is very close and their homogeneities are so high. The average micro-hardness values of the ingot alloys were measured between 208 and 266 HV for matrix. The elastic modulus and densities of the Mg65Ni20Y15–XAgX (X = 1, 2, 3, 5) alloys increased by increasing Ag in the alloys and they were determined in the range of 58.18–68.12 GPa and 3.14–3.53 g/cm3, respectively.


2017 ◽  
Vol 866 ◽  
pp. 282-286 ◽  
Author(s):  
Chatchai Kruea-In ◽  
Suchittra Inthong ◽  
Wilaiwan Leenakul

In this research, The effects of NiO nanoparticles on the physical and mechanical properties of Bi0.5(Na0.81,K0.19)0.5TiO3 (BNKT) were investigated. The ceramics were synthesized by solid state reaction technique. The powder of BNKT was calcined at 850 °C for 4 h. The ceramics of BNKT/x NiO vol.% ( i.e. x= 0.0, 1.0, 2.0 and 3.0) were sintered at 1000-1150 °C for 2 h for optimize condition. Densification, phase formation, microstructure and micro hardness of samples were characterized via Archimedes method, X-ray diffraction techniques (XRD), scanning electron microscope (SEM) and Vickers micro hardness tester. The X-ray diffraction analysis of the ceramics suggests that all samples exhibited a perovskite structure. Densification of samples tended to increase with increasing amount of NiO content with minimun at 1.0 vol.% NiO additive. The NiO additive influenced densification as well as the mechanical properties of the samples. The results of this research suggest that NiO nanoparticles have influence on physical and mechanical properties of BNKT ceramics.


2019 ◽  
Vol 16 (1) ◽  
pp. 171-184
Author(s):  
Amal Mohamed Yassin ◽  
B.A. Khalifa ◽  
R. Afify Ismail

The microstructure and micro-hardness of Sn-3.5wt.5%Ag, Sn-3.5wt.%Ag-0.27wt.%Ti and Sn-3.5wt.%Ag-0.27wt.%Cd treated at 75, 100, 125 and 150oC were studied. The microstructure characteristics of the tested alloys had been investigated using optical microscope (OM), scanning electron microscope (SEM) and x-ray diffraction (XRD). The impression creep had been carried out using Vickers micro-hardness indenter under different loads (10, 50 and 100gm). The stress exponent values were found to be varied from 3.2 to 8.4. The energy activating the creep processes support dislocation climb as the rate controlling mechanism. The dislocation mobility was restricted due to the agglomerations of the Ag3Sn eutectic phase in the above three solders. Whereas; the presence of the twinning of ?-Sn phase, and the dispersion of fine CdSn1.9 IMCs throughout Sn-3.5wt.%Ag-0.27wt.%Cd made strongly blockage of the dislocation motion.


2011 ◽  
Vol 312-315 ◽  
pp. 788-793 ◽  
Author(s):  
Matej Beznák ◽  
Alexander S. Chaus ◽  
Lubomír Čaplovič

Diffusion boride layer has been produced on the surface of a hot work tool steel. The microstructure and elemental spectra as well as depth profiles of the elements in the boride layer have been studied by scanning electron microscopy, X-ray diffraction analysis and energy dispersive X-ray spectrometry. Micro-hardness measurement was carried out using the Vickers micro-hardness test. The results showed that the boride layer is formed by boron compound Fe2B. Additionally, boron carbide B4C has been revealed embedded in the bulk of the boride layer.


2005 ◽  
Vol 60 (5) ◽  
pp. 505-510 ◽  
Author(s):  
Tong-Lai Zhang ◽  
Jiang-Chuang Song ◽  
Jian-Guo Zhang ◽  
Gui-Xia Ma ◽  
Kai-Bei Yu

Cobalt(II) and zinc(II) complexes of ethyl carbazate (ECZ), [Co(ECZ)3](NO3)2 and [Zn(ECZ)3] (NO3)2, were synthesized. Single crystals of these two compounds were grown from aqueous solutions using a slow evaporation method. Their structures have been determined by X-ray diffraction analysis. Both of them are monoclinic with space group P21/n. The complexes are further characterized by element analysis and IR measurements. Their thermal stabilities are studied by using TG-DTG, DSC techniques. When heated to 350 °C, only metal oxide was left for both complexes.


2007 ◽  
Vol 1040 ◽  
Author(s):  
Hiroaki Yokoo ◽  
Naoki Wakiya ◽  
Naonori Sakamoto ◽  
Takato Nakamura ◽  
Hisao Suzuki

AbstractWe have grown indium nitride (InN) films using In buffer layer on an a-plane sapphire substrate under atmospheric pressure by halide CVD (AP-HCVD). Growth was carried out by two steps: deposition In buffer layer at 900 °C and subsequent growth of InN layer at 650 °C. In order to compare, we also grown InN films on an a-plane sapphire. The InN films are investigated on crystal quality, surface morphology and electrical property using high-resolution X-ray diffraction (HR-XRD), X-ray pole figure, scanning electron microscope (SEM), Hall measurement. The results show that the crystal quality, surface morphology and electrical property of InN films are improved by using In buffer layer.


1992 ◽  
Vol 242 ◽  
Author(s):  
T. D. Moustakas ◽  
R. J. Molnar ◽  
T. Lei ◽  
G. Menon ◽  
C. R. Eddy

ABSTRACTGaN films were grown on c-plane (0001), a-plane (1120) and r-plane (1102) sapphire substrates by the ECR-assisted MBE method. The films were grown using a two-step growth process, in which a GaN buffer is grown first at relatively low temperatures and the rest of the film is grown at higher temperatures. RHEED studies indicate that this growth method promotes lateral growth and leads to films with smooth surface morphology. The epitaxial relationship to the substrate, the crystalline quality and the surface morphology were investigated by RHEED, X-ray diffraction and SEM studies.


Sign in / Sign up

Export Citation Format

Share Document