NANOMECHANICAL AND CORROSION PROPERTIES OF ZK60 MAGNESIUM ALLOY IMPROVED BY GD ION IMPLANTATION

2014 ◽  
Vol 21 (06) ◽  
pp. 1450085 ◽  
Author(s):  
XUE WEI TAO ◽  
ZHANG ZHONG WANG ◽  
XIAO BO ZHANG ◽  
ZHI XIN BA ◽  
YA MEI WANG

Gadolinium ( Gd ) ion implantation with doses from 2.5 × 1016 to 1 × 1017 ions/cm2 into ZK60 magnesium alloy was carried out to improve its surface properties. X-ray photoelectron spectroscopy (XPS), nanoindenter, electrochemical workstation and scanning electron microscope (SEM) were applied to analyze the chemical composition, nanomechanical properties and corrosion characteristics of the implanted layer. The results indicate that Gd ion implantation produces a hybrid-structure protective layer composed of MgO , Gd 2 O 3 and metallic Gd in ZK60 magnesium alloy. The surface hardness and modulus of the Gd implanted magnesium alloy are improved by about 300% and 100%, respectively with the dose of 1 × 1017 ions/cm2, while the slowest corrosion rate of the magnesium alloy in 3.5 wt.% NaCl solution is obtained with the dose of 5 × 1016 ions/cm2.

Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 734
Author(s):  
Banglong Yu ◽  
Jun Dai ◽  
Qingdong Ruan ◽  
Zili Liu ◽  
Paul K. Chu

Carbon ion implantation was conducted on an AM60 magnesium alloy with fluences between 1 × 1016 and 6 × 1016 ions/cm2 and an energy of 35 keV. The microstructure and electrochemical properties of the samples were systematically characterized by X-ray photoelectron spectroscopy, X-ray diffraction, Raman scattering, scanning electron microscopy, transmission electron microscopy, and electrochemical methods. These studies reveal that a 250 nm-thick C-rich layer is formed on the surface and the Mg2C3 phase embeds in the ion-implanted region. The crystal structure of the Mg2C3 was constructed, and an electronic density map was calculated by density-functional theory calculation. The large peak in the density of states (DOS) shows two atomic p orbitals for Mg2C3. The main electron energy is concentrated between −50 and −40 eV, and the electron energy mainly comes from Mg (p) and Mg (s). The electrochemical experiments reveal that the Ecorr is −1.35 V and Icorr is 20.1 μA/cm2 for the sample implanted with the optimal fluence of 6 × 1016 ions/cm2. The sample from C ion implantation gives rise to better corrosion resistance.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 313
Author(s):  
Jun Dai ◽  
Zheng Liu ◽  
Banglong Yu ◽  
Qingdong Ruan ◽  
Paul K. Chu

Ti, Ni, and Ti/Ni plasma immersion ion implantation is carried out on the AM60 magnesium alloy with a 6 × 1016 ions/cm2 fluence and energy of 35 keV. The corrosion and wear properties of the ion-implanted samples are determined systematically by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, electrochemical methods and wear tests. A Ni-rich layer composed of α-Mg, Ni2O3, and NiTi2 is formed on the surface after dual Ti/Ni ion implantation, and the ion implantation range is approximately 300 nm. The corrosion resistance of the Ni- and Ti/Ni-implanted AM60 samples is significantly reduced in the 3.5% NaCl solution. However, NiTi2 does not adhere well to the grinding ring during the wear test due to the bonding properties, and the sample implanted with both Ti and Ni shows the best wear resistance.


2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Vanessa Mandarano Pinela ◽  
Leandro Antônio de Oliveira ◽  
Mara Cristina Lopes de Oliveira ◽  
Renato Altobelli Antunes

The AZ91D magnesium alloy was immersed in 3.5 wt.% NaCl solution at room temperature for times ranging from 1 minute up to 72 hours. The aim was to investigate the evolution of the corrosion process using confocal laser scanning microscopy (CLSM), electrochemical impedance spectroscopy, and X-ray photoelectron spectroscopy. The microstructure of the as-received alloy was initially characterized by optical microscopy and scanning electron microscopy (SEM). The crystalline phases were identified by X-ray diffractometry. The main phases were primary-α, eutectic-α, and β (Mg17Al12). Vickers microhardness markings were made on the surface of one etched sample to facilitate the identification of the same region at each different immersion time, thus enabling the observation of the corrosion process evolution. Corrosion initiates at the grain boundaries of the eutectic microconstituent and, then, propagates through primary α-grains. The β-phase was less severely attacked.


KnE Energy ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Ari Handayani

<p>Ion implantation is widely used for surface treatment to modify the near surface properties of materials especially semiconductors without changing their bulk properties. In this work an investigation on the effect of implantation by Ti-ion on the mechanical properties and the wet corrosion of the high Cr and Ni content FeCrNi alloy was performed. Because of its superior properties this alloy is also well known as super alloy and often used as structure material in nuclear reactors. The alloy <del cite="mailto:USER" datetime="2016-05-18T11:01">was fabricated </del><del cite="mailto:USER" datetime="2016-05-18T10:59">at </del><del cite="mailto:USER" datetime="2016-05-18T11:01">BATAN </del><del cite="mailto:USER" datetime="2016-05-18T11:00">in </del><del cite="mailto:USER" datetime="2016-05-18T11:01">Bandung </del>containing <ins cite="mailto:USER" datetime="2016-05-18T10:38">of </ins>55.98 wt.% Fe , 23.46 wt.% Cr, 18.23 wt.% Ni and small amount of other metal elements<ins cite="mailto:USER" datetime="2016-05-18T11:01">, </ins><ins cite="mailto:USER" datetime="2016-05-18T11:01">was fabricated </ins><ins cite="mailto:USER" datetime="2016-05-18T11:01">in</ins><ins cite="mailto:USER" datetime="2016-05-18T11:01"> BATAN Bandung</ins>. The alloy sample was subjected to Ti-ion implantation in an ion generator with theoretical doses varied between 0.89x10<sup>16</sup>, 2.68x10<sup>16</sup>, 3.58x10<sup>16</sup> and 10.75x10<sup>16</sup> ion/cm<sup>2</sup>respectivelly. The hardness measurement was conducted with Vickers method and the corrosion resistance test was carried out in the borax acid (HBO<sub>3</sub>) environment. The microstructure of the material after implantation was characterized and analyzed by means of the Scanning Electron Microscopy (SEM) equipped with the Energy Dispersive X-Ray Detector (EDX) while the surface crystal structure was idenfied using X-Ray Diffraction (XRD). The result showed that the Ti implantation improved the surface hardness when the dose was higher than 3.58x10<sup>16</sup> ion/cm<sup>2</sup>, while the corrosion resistance increased abruptly at all ion doses. However, no microstructure change could be observed on the cross section. A thin layer which is indicated by BSE image contrast was observed in the top most surface. Analysis on the EDS spectrum revealed that the layer could be considered to be the titanium oxide elucidating the increasing of hardness and exceptionally higher resistance to wet corrosion.</p>


2011 ◽  
Vol 675-677 ◽  
pp. 1279-1282 ◽  
Author(s):  
Yu Jiang Wang ◽  
Xin Xin Ma ◽  
Guang Ze Tang ◽  
Ming Ren Sun ◽  
Bin Shi Xu

A series of a-C:H films have been prepared by plasma-based ion implantation (PBII) with acetylene on AISI 321 substrates. The effect of negative bias pulse on the characteristics of these films was investigated. The structures of the films were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The surface hardness was measured by microindentation tests. The results indicated that the characteristics of these films are strongly depended on the negative bias pulse. When the bias pulse ranges from -10kV to -40kV, the films are typical diamond like carbon (DLC) films, while the films deposited at -5kV are polymer films. The peak intensity ratio of the D-band to that of the G-band (ID/IG) of the DLC films changes with the negative bias pulse. The minimum value of ID/IG (1.02) was gotten at -10kV.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Luca Pezzato ◽  
Katya Brunelli ◽  
Riccardo Babbolin ◽  
Paolo Dolcet ◽  
Manuele Dabalà

In this work, solutions containing lanthanum salts were used for a post-treatment of sealing to increase the corrosion resistance of PEO coated AZ91 alloy. PEO coatings were produced on samples of AZ91 magnesium alloy using an alkaline solution containing sodium hydroxide, sodium phosphates, and sodium silicates. The sealing treatment was performed in a solution containing 12 g/L of La(NO3)3at pH 4 at different temperatures and for different treatment times. Potentiodynamic polarization test, an EIS test, showed that the sealing treatment with solution containing lanthanum nitrate caused a remarkable increase in the corrosion resistance. The corrosion behavior was correlated with the surface morphology and elemental composition evaluated with scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, the sealing treatment at 50°C for 30 min resulted in being the most promising to increase the corrosion properties of PEO treated samples because of the formation of a homogeneous sealing layer, mainly composed of La(OH)3.


2012 ◽  
Vol 90 (1) ◽  
pp. 39-43 ◽  
Author(s):  
X. Xiang ◽  
D. Chang ◽  
Y. Jiang ◽  
C.M. Liu ◽  
X.T. Zu

Anatase TiO2 thin films are deposited on K9 glass samples at different substrate temperatures by radio frequency magnetron sputtering. N ion implantation is performed in the as-deposited TiO2 thin films at ion fluences of 5 × 1016, 1 × 1017, and 5 × 1017 ions/cm2. X-ray diffraction, atomic force microscope, X-ray photoelectron spectroscopy (XPS), and UV–visible spectrophotometer are used to characterize the films. With increasing N ion fluences, the absorption edges of anatase TiO2 films shift to longer wavelengths and the absorbance increases in the visible light region. XPS results show that the red shift of TiO2 films is due to the formation of N–Ti–O compounds. As a result, photoactivity is enhanced with increasing N ion fluence.


2020 ◽  
Vol 62 (4) ◽  
pp. 395-399
Author(s):  
Jiehui Liu ◽  
Hongjun Hu ◽  
Yang Liu ◽  
Dingfei Zhang ◽  
Zhongwen Ou ◽  
...  

Abstract Compound extrusion (CE) is a newly developed plastic deformation technique which combines direct extrusion (DE) with a two-pass equal channel angular extrusion (ECAE). This paper focuses on the strength, ductility and anti-corrosion properties of an NaCl solution at certain concentrations and the wear-resistance of dry sliding AZ61 magnesium alloy prepared by CE and DE. It is found that the strength and elongation of the AZ61 alloy prepared by CE are enhanced because of grain refinement. Furthermore, AZ61 magnesium alloy made by CE displays higher corrosion and wear resistance than that prepared by DE. Experimental results prove that CE is a prospective manufacturing method for improving the mechanical properties, anti-corrosion and anti-wear of AZ61 magnesium alloy.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 666
Author(s):  
Xinchuan Fan ◽  
Yue Hu ◽  
Yijun Zhang ◽  
Jiachen Lu ◽  
Xiaofeng Chen ◽  
...  

Reduced graphene oxide–epoxy grafted poly(styrene-co-acrylate) composites (GESA) were prepared by anchoring different amount of epoxy modified poly(styrene-co-acrylate) (EPSA) onto reduced graphene oxide (rGO) sheets through π–π electrostatic attraction. The GESA composites were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The anti-corrosion properties of rGO/EPSA composites were evaluated by electro-chemical impedance spectroscopy (EIS) in hydroxyl-polyacrylate coating, and the results revealed that the corrosion rate was decreased from 3.509 × 10−1 to 1.394 × 10−6 mm/a.


Sign in / Sign up

Export Citation Format

Share Document