TRIBOLOGICAL PROPERTIES OF TiO2/SiO2 DOUBLE LAYER COATINGS DEPOSITED ON CP-Ti

2016 ◽  
Vol 24 (06) ◽  
pp. 1750082 ◽  
Author(s):  
O. ÇOMAKLI ◽  
M. YAZICI ◽  
T. YETIM ◽  
A. F. YETIM ◽  
A. ÇELIK

In the present paper, the influences of different double layer on wear and scratch performances of commercially pure Titanium (CP-Ti) were investigated. TiO2/SiO2 and SiO2/TiO2 double layer coatings were deposited on CP-Ti by sol–gel dip coating process and calcined at 750[Formula: see text]C. The phase structure, cross-sectional morphology, composition, wear track morphologies, adhesion properties, hardness and roughness of uncoated and coated samples were characterized with X-ray diffraction, scanning electron microscopy (SEM), nano-indentation technique, scratch tester and 3D profilometer. Also, the tribological performances of all samples were investigated by a pin-on-disc tribo-tester against Al2O3 ball. Results showed that hardness, elastic modulus and adhesion resistance of double layer coated samples were higher than untreated CP-Ti. It was found that these properties of TiO2/SiO2 double layer coatings have higher than SiO2/TiO2 double layer coating. Additionally, the lowest friction coefficient and wear rates were obtained from TiO2/SiO2 double layer coatings. Therefore, it was seen that phase structure, hardness and film adhesion are important factors on the tribological properties of double layer coatings.

2012 ◽  
Vol 445 ◽  
pp. 685-690 ◽  
Author(s):  
A. Binnaz Hazar Yoruc ◽  
Aysu Karakas ◽  
Oktay Elkoca ◽  
Yeliz Koca Ipek

Hydroxyapatite (HA) is the major component of the natural hard tissues such as teeth and bone. It has been studied extensively as a candidate biomaterial for its use in prosthetic applications. However, the main weakness of this material lies in its poor mechanical strength which makes it unsuitable for load-bearing applications. On the other hand zirconia (ZrO2) powder has been widely studied because of its high strength and fracture toughness and good biocompatibility. Therefore, the addition of zirconia phase into HA will improve the mechanical properties and biocompatibility of HA ceramics. The present study focused on coating of HA-ZrO2 on commercially pure titanium (cp-Ti) using novel biomimetic sol-gel method. The HA-ZrO2 coatings produced with BSG method were exhibited highly crystalline and pure structure. The coating thickness of the samples was not significantly influenced by the change in gelatin concentration and volume. It was concluded that the suggested coating method is a useful method to produce a biomimetic coating layer on the cp-Ti sample surfaces.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 401
Author(s):  
Ruzil Farrakhov ◽  
Olga Melnichuk ◽  
Evgeny Parfenov ◽  
Veta Mukaeva ◽  
Arseniy Raab ◽  
...  

The paper compares the coatings produced by plasma electrolytic oxidation (PEO) on commercially pure titanium and a novel superelastic alloy Ti-18Zr-15Nb (at. %) for implant applications. The PEO coatings were produced on both alloys in the identical pulsed bipolar regime. The properties of the coatings were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS). The PEO process kinetics was modeled based on the Avrami theorem and Cottrell equation using a relaxation method. The resultant coatings contain TiO2, for both alloys, and NbO2, Nb2O5, ZrO2 for Ti-18Zr-15Nb alloy. The coating on the Ti-18Zr-15Nb alloy has a higher thickness, porosity, and roughness compared to that on cp-Ti. The values of the kinetic coefficients of the PEO process—higher diffusion coefficient and lower time constant for the processing of Ti-18Zr-15Nb—explain this effect. According to the electrochemical studies, PEO coatings on Ti-18Zr-15Nb alloy provide better corrosion protection. Higher corrosion resistance, porosity, and roughness contribute to better biocompatibility of the PEO coating on Ti-18Zr-15Nb alloy compared to cp-Ti.


2012 ◽  
Vol 548 ◽  
pp. 174-178 ◽  
Author(s):  
Chong Yang Gao ◽  
Wei Ran Lu

By using a dislocation-based plastic constitutive model for hcp metals developed by us recently, the dynamic thermomechanical response of an important industrial material, commercially pure titanium (CP-Ti), was described at different temperatures and strain rates. The constitutive parameters of the material are determined by an efficient optimization method for a globally optimal solution. The model can well predict the dynamic response of CP-Ti by the comparison with experimental data and the Nemat-Nasser-Guo model.


Author(s):  
Karibeeran Shanmuga Sundaram ◽  
Gurusami Kiliyappan ◽  
Senthil Kumaran Selvadurai

Laser shock peening (LSP) is one of the innovative technique that produces a compressive residual stress on the surface of metallic materials, thereby significantly increasing its fatigue life in applications where failure is caused by surface-initiated cracks. The specimens were treated with laser shock waves with different processing parameters, and characterization studies were made on treated specimens. The purpose of the present study was to investigate the influence of Nd:YAG laser on commercially pure titanium (CP-Ti) used in prosthetic dental restorations. The treatment influenced change in microstructure, micro hardness, surface roughness, and wear resistance characteristics. Though CP-Ti is considered as an excellent material for dental applications due to its outstanding biocompatibility, it is not suitable when high mastication forces are applied. In the present study, pulsed Nd:YAG laser surface treatment technique was adopted to improve the wear resistance of CP-Ti. The wear test pin specimens of CP-Ti were investment cast with centrifugal titanium casting machine. The wear properties of specimens were evaluated after LSP on a “pin-on-disc” wear testing tribometer, as per ASTM G99-05 standards. The results of the wear experiment showed that the treated laser surface has higher wear resistance, micro hardness, and surface roughness compared to as-cast samples. The improvement of wear resistance may be attributed due to grain refinement imparted by LSP processes. The microstructure, wear surfaces, wear debris, and morphology of the specimen were analyzed by using optical electron microscope, scanning electron microscope, and X-ray diffraction (XRD). The data were compared using ANOVA and post-hoc Tukey tests. The characteristic change resulted in increase in wear resistance and decrease in wear rate. Hence, it is evident that the more reliable and removable partial denture metal frameworks for dental prostheses may find its applications.


2005 ◽  
Vol 19 (2) ◽  
pp. 139-143 ◽  
Author(s):  
Wagner Sotero Fragoso ◽  
Guilherme Elias Pessanha Henriques ◽  
Edwin Fernando Ruiz Contreras ◽  
Marcelo Ferraz Mesquita

Commercially pure titanium (CP Ti) has been widely applied to fabricate cast devices because of its favorable properties. However, the mold temperature recommended for the manufacture of casts has been considered relatively low, causing inadequate castability and poor marginal fit of cast crowns. This study evaluated and compared the influence of mold temperature (430°C - as control, 550°C, 670°C) on the marginal discrepancies of cast CP Ti crowns. Eight bovine teeth were prepared on a mechanical grinding device and impressions were used to duplicate each tooth and produce eight master dies. Twenty-four crowns were fabricated using CP Ti in three different groups of mold temperature (n = 8): 430°C (as control), 550°C and 670°C. The gap between the crown and the bovine tooth was measured at 50 X magnification with a traveling microscope. The marginal fit values of the cast CP Ti crowns were submitted to the Kruskal-Wallis test (p = 0.03). The 550°C group (95.0 µm) showed significantly better marginal fit than the crowns of the 430°C group (203.4 µm) and 670°C group (213.8 µm). Better marginal fit for cast CP Ti crowns was observed with the mold temperature of 550°C, differing from the 430°C recommended by the manufacturer.


10.30544/384 ◽  
2011 ◽  
Vol 17 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Hamid Reza Asgari Bidhendi ◽  
Majid Pouranvari

Titanium alloys and stainless steel 316L are still the most widely used biomaterials for implants despite emerging new materials for this application. There is still someambiguity in corrosion behavior of metals in simulated body fluid (SBF). This paper aims at investigating the corrosion behavior of commercially pure titanium (CP-Ti), Ti–6Al–4V and 316LVM stainless steel (316LVM) in SBF (Hank’s solution) at37 ºC using the cyclic polarization test. Corrosion behavior was described in terms of breakdown potential, the potential and rate ofcorrosion, localized corrosion resistance, andbreakdown repassivation. The effects of anodizing on CP-Ti samples and the passivation on the 316LVM were studied in detail. It was shown that CP-Ti exhibited superior corrosion properties compared to Ti–6Al–4V and 316LVM.


2010 ◽  
Vol 654-656 ◽  
pp. 2172-2175
Author(s):  
Kyosuke Ueda ◽  
Hajime Suto ◽  
Kaori Nakaie ◽  
Takayuki Narushima

The surface modification of commercially pure titanium (CP Ti) by pack cementation treatment at 973 K using tetracalcium phosphate (Ca4(PO4)2O, TTCP) slurry was investigated. An HAp phase and a CaTiO3 phase were observed on the reaction layer of the CP Ti substrate after pack cementation treatment at 973 K for 86.4 ks. TTCP powder decomposed to HAp and CaO, and CaO reacted with TiO2 to form CaTiO3. The reaction layer on the CP Ti substrate consisted of inner and outer layers and the particles were in the outer reaction layer. The pores observed on the reaction layer were formed by the detachment of particles from the outer layer. The bonding strength of the reaction layer was 68.1 MPa. Apatite completely covered the surface of the pack-cementation-treated CP Ti after immersion in Kokubo solution for 21.6 ks; such rapid apatite formation suggests that pack cementation treatment improves the biocompatibility of titanium.


2018 ◽  
Vol 53 (9) ◽  
pp. 6872-6892 ◽  
Author(s):  
S. Khayatzadeh ◽  
M. J. Thomas ◽  
Y. Millet ◽  
S. Rahimi

Author(s):  
F Reshadi ◽  
S Khorasani ◽  
G Faraji

This study investigated the surface characteristics of ultrafine-grain commercially pure titanium (UFG CP-Ti) substrates produced by equal channel angular pressing (ECAP), compared with those of coarse-grain commercially pure titanium (CG CP-Ti) and Ti–6Al–4V (Ti-64) substrates. All Ti surfaces were sandblasted and acid-etched (SLA-treated) to produce micro-rough surfaces. Tensile and microhardness tests were carried out to measure the mechanical properties of fabricated samples. Then the surface characteristics of samples including contact angle measurements, surface morphology and in vitro cell response were evaluated after polishing, sandblasting and acid etching procedures. The results showed that after applying four passes of ECAP, the average grain size of microstructure decreased from 25 µm to 170 nm, while the ultimate tensile strength increased from 545 ± 24 MPa to 971 ± 38 MPa. Investigation of surface morphologies carried out by scanning electron microscopy indicated that ECAP-processed substrate exhibits nano-topography compared with CG CP-Ti and Ti-64 substrates after applying SLA process. In addition, the contact angle of SLA-treated CG CP-Ti and UFG CP-Ti substrates decreased from 68.3° to 9.5° and 51.9° to 7.4°, respectively, indicating a significant improvement of surface wettability. The morphologies of MG63 cells cultured on the developed surfaces proved the potential superior osteoblast cell compatibility of the micro-roughened surface made of UFG CP-Ti substrates over CG CP-Ti and Ti-64 substrates.


Sign in / Sign up

Export Citation Format

Share Document