BEHAVIOUR OF SILOS SUPPORTED ON DISCRETE BRACKETS

2002 ◽  
Vol 02 (01) ◽  
pp. 45-62 ◽  
Author(s):  
M. GILLIE ◽  
J. M. F. G. HOLST ◽  
M. MÜNCH ◽  
J. M. ROTTER

The controlling design condition in thin metal silos is generally buckling under axial compression. This compression is often assumed to be uniform but in many practical cases several failure modes interact as a result of a rather more complex pattern of stresses. Small silos are often supported on several columns with local brackets attached to the sides of the shell. Failure occurs with an interaction between buckling and yielding under a stress regime involving a combination of membrane and bending stresses developed by the applied loads. This paper firstly reviews the literature relevant to bracket supported silos and exposes the limitations in the available design guidance. The results of a series of finite element analyses are then presented to describe the underlying structural behaviour. It is shown that material and geometric non-linearity both play an important role in the behaviour of discretely supported silos. It is also established that the degree of bracket eccentricity is an important factor in determining the mechanism of failure and the associated strength of the silo. Finally, comparison is made between the numerical results and existing design guidelines.

2018 ◽  
Vol 22 (2) ◽  
pp. 323-336 ◽  
Author(s):  
Joung Rae Kim ◽  
Hyo-Gyoung Kwak ◽  
Byung-Suk Kim ◽  
Yangsu Kwon ◽  
El Mahdi Bouhjiti

This article presents analyses and the design of a post-tensioned anchorage zone made of ultra-high-performance concretes with three-dimensional finite element analyses. The structural behavior was investigated through the failure modes and cracking patterns to show the anchorage zone resistance enhancement with an increase of the strength in concrete. Since the anchorage failure is usually initiated from the local zone in the case of ultra-high-performance concrete beams that have compressive strength of more than 80 MPa, the placement of reinforcements can effectively be used to enhance the strength and ductility for the local zone. However, ultra-high-performance concrete requires a smaller amount of reinforcement than normal-strength concrete. Parametric analyses are carried out to show the effect of the spiral reinforcement on the strength of the anchorage zone, and comparison with the design guidelines in NCHRP Report 356 is made. Finally, improved guidelines are suggested to cover the design of ultra-high-performance concrete.


Author(s):  
Morteza Dezyani ◽  
Shahram Yousefi ◽  
Hossein Dalayeli ◽  
Hamid Frrokhfal

Preliminary design of stiffened compression panels used in aerospace structures is commonly based on the routine analytical and semi-empirical equations. Empirical charts are used for obtaining an initial guess to start the preliminary design process. In this paper, preliminary design guidelines for stiffened compression panels are developed based on the non-linear finite element analyses. Meanwhile, the process of design and optimization of the stiffened compression panels are carried out. Modelling phase is based on the finite element simulations of the structure. The surrogate modelling technique is employed to reduce the number of finite element analyses. An efficient technique is developed to find the global optimum of the surrogate model using sequential quadratic programming algorithm. The proposed approach is applied to two types of integrally stiffened panels. The final results are extracted as practical design guidelines which are suitable for preliminary design phase.


Author(s):  
Masaki Shiratori ◽  
Yoji Ochi ◽  
Izumi Nakamura ◽  
Akihito Otani

A series of finite element analyses has been carried out in order to investigate the failure behaviors of degraded bent pipes with local thinning against seismic loading. The sensitivity of such parameters as the residual thickness, locations and width of the local thinning to the failure modes such as ovaling and local buckling and to the low cycle fatigue damage has been studied. It has been found that this approach is useful to make a reasonable experimental plan, which has to be carried out under the condition of limited cost and limited period.


Author(s):  
David Y. Jeong ◽  
Radim Bruzek ◽  
Ali Tajaddini

This paper is the first of a two-part series describing a research project, sponsored by the Federal Railroad Administration (FRA), to study the structural integrity of joint bars. In Part I of this series, observations from field surveys conducted on revenue service track are presented. Automated and visual inspections of rail joints were conducted to identify defective joint bars. Detailed information and measurements were collected at various joint locations. The survey team consisted of personnel from ENSCO, Inc. and Transportation Technology Center, Inc. (TTCI), working in cooperation with staff from participating railroads. Part II of this series describes the development of finite element analyses of jointed rail, which is being carried out by the Volpe National Transportation Systems Center (Volpe Center).


2018 ◽  
Vol 79 (1) ◽  
Author(s):  
Pang Wei Ken ◽  
Abdul Aziz bin Abdul Samad ◽  
Goh Wan Inn ◽  
Noridah Mohamad ◽  
Mohamad Zulhairi Mohd Bosro ◽  
...  

Interlocking hollow block (IHB) system is a new building technology which eliminates the mortar layer and instead provides a key connection (protrusions and grooves) to interconnect the blocks. With respect to the mortarless feature of the system, it will shorten the construction period, reduce labour and cost, and is environmental friendly. This study covers the modelling and the analysis of Putra Block which is an interlocking hollow block system developed by the Housing Research Centre at Universiti Putra Malaysia (UPM) under axial compression load using Finite Element Method (FEM). The block units comprise of a stretcher block, a corner block and a half block. The aims of this research were to develop the Putra Block prism model using ABAQUS software and to study the structural behaviour of these prisms under axial load using finite element analysis. The Putra Block prism consists of three layers of blocks where the top and bottom layer are made of stretcher block where the middle layer are made of two half blocks placed side by side. Before proceeding with the simulation study, validation of the Putra Block prisms was conducted by using results from previous experimental research work. It was found that the ultimate load between experimental and simulation results had slight differences with an error of 2.56%. The small variations justify the ability of ABAQUS to predict the structural behaviour of elements under axial compression load with good accuracy level. Based on the FEA study, higher compressive stress value was observed on the face-shell of the block whilst higher tensile stress occurred at the webs. The failure of the prisms was mainly due to extensive tensile cracks induced at the web-shell interaction and middle of the block. Further parametric study reveals that by increasing the height of the individual blocks lead to the reduction of its ultimate load. Consequently, the use of higher concrete grade block indicated an improvement in the prism strength and stability under axial load.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1250-1253
Author(s):  
Wei Chao Ao ◽  
Qing Fang Niu ◽  
Guan Feng Qiao ◽  
Tie Ying Li

Brackets is the ancient Chinese wooden building unique ways and one of the main features of the structure. Its dual function of both structural and architectural: An important component of both the structure itself, because of its flexible features tenon, the dynamic response of the structure can absorb greater energy, play a good role in the earthquake; But it is also a special architectural ornament, can play the effect of beautifying buildings. Therefore, this paper based on the finite element software ABAQUS brackets by the force of the mechanism of failure modes and numerical simulation analysis for the brackets and the whole structure of the wood to provide a scientific assessment and reinforcement.


2018 ◽  
Vol 763 ◽  
pp. 592-599 ◽  
Author(s):  
Marina D'Antimo ◽  
Mariana Zimbru ◽  
Mario D'Aniello ◽  
Jean François Demonceau ◽  
Jean Pierre Jaspart ◽  
...  

Nowadays, the interest on structural robustness is increasing because of the recent terroristic attacks. Although a large number of research projects have been carried out in this field, limited design guidelines as well as code recommendations are nowadays available. Leading to the fact that the design for robustness is far from being current practice. Conversely, the design for natural hazards as the earthquake is a well-consolidated practice and modern codes implement effective and well-recognized design rules. Even though seismic design philosophy based on the concept of hierarchy of resistance enables structural robustness for conventional structural systems, this is not demonstrated for structures equipped with anti-seismic devices as well as innovative dissipative systems. Recently, the use of friction based dissipative joints has been proved to be a promising solution for seismically design steel moment resisting frames. However, the robustness and the resistance against impact loading of this type of joints is not yet investigated. With the aim to develop an experimental campaign based on impact tests, preliminary finite element analyses have been carried out to identify the main criticisms and to drive the rational design of the joint specimens. With this regard, in the present paper, the results of a numerical parametric study on the preliminary push-down test are presented and discussed.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012020
Author(s):  
A W Ahmed-Abdullamohamed ◽  
M K Kamarudin ◽  
M M. Yussof

Abstract The demand for transparency has increased in the construction industry and contemporary architecture over the last decade. The prior researchers focused on glass columns because their uniqueness and transparent characteristics generate an impressive visual feature. Past studies on structural glass entailed numerous experimental investigations, but FEA was applied in a few investigation exercises. This study aims to validate the experimental data and analyse the crack in the tubular glass column and determine the effectiveness of different slenderness ratios of the glass column. This study investigated the column structural behaviour under compression with different geometrical dimensions of hollow section laminated glass columns to determine their load-carrying capacity, buckling performance, and failure mechanism. Finite element analysis using the explicit method was performed by using ABAQUS. The study found that the failure mechanisms depend on the slenderness ratio classified into two failure modes, either buckling or crushing. The glass column failed due to buckling when the slenderness ratio is more than 40, while it failed due to crushing when the slenderness ratio is less than 40. The finite element analysis did not correlate perfectly with the experimental data since the FEA underestimating the glass performance.


Sign in / Sign up

Export Citation Format

Share Document