Nonlinear Vibration Analysis of a Cable Carrying Moving Mass-Spring-Damper

2018 ◽  
Vol 18 (02) ◽  
pp. 1850030 ◽  
Author(s):  
M. Ghadiri ◽  
M. Kazemi

In this study, nonlinear dynamics and vibrations of a mass, spring and damper system with constant and variable velocities have been investigated. One end of the large-sag cable is fixed and the other one can be varied using different heights with respect to the first end. The oscillator can be accelerated by the tangential component of the weight force. The governing equations of motion are derived with regard to the mutual influence of the cable movement and vertical motion of attached mass. The Galerkin’s method is employed in the displacement field in conjunction with the average acceleration method in the time domain to solve the governing equations. The parametric study is performed on the vertical movement of the oscillator, the displacement of the cable and the velocity of the moving oscillator.

Author(s):  
A. R. Ohadi ◽  
G. Maghsoodi

In this paper, vibration behavior of engine on nonlinear hydraulic engine mount including inertia track and decoupler is studied. In this regard, after introducing the nonlinear factors of this mount (i.e. inertia and decoupler resistances in turbulent region), the vibration governing equations of engine on one hydraulic engine mount are solved and the effect of nonlinearity is investigated. In order to have a comparison between rubber and hydraulic engine mounts, a 6 degree of freedom four cylinders V-shaped engine under inertia and balancing masses forces and torques is considered. By solving the time domain nonlinear equations of motion of engine on three inclined mounts, translational and rotational motions of engines body are obtained for different engine speeds. Transmitted base forces are also determined for both types of engine mount. Comparison of rubber and hydraulic mounts indicates the efficiency of hydraulic one in low frequency region.


2017 ◽  
Vol 24 (18) ◽  
pp. 4096-4109 ◽  
Author(s):  
MA Bukhari ◽  
O Barry ◽  
E Tanbour

This work investigates the performance of a moving damper for overhead transmission lines. The damper or absorber consists of mass-spring-damper-mass system. The absorber is connected to a single conductor subjected to pretension and wind force. The governing equations of motion are obtained using Hamilton’s principle, and numerical analysis is carried out using MATLAB®. The model is validated by comparing the present results to those in the literature. Parametric studies are conducted to investigate the performance of the proposed absorber. The results indicate that a moving absorber can be more effective than a fixed absorber. It is also demonstrated that the vibration displacement decreases with increasing forcing frequency and decreasing absorber speed.


1997 ◽  
Vol 50 (11S) ◽  
pp. S174-S179 ◽  
Author(s):  
S. Preidikman ◽  
D. T. Mook

A method for simulating the spontaneous, wind-excited vibrations of suspension bridges is described. The approach is based on a numerical model that treats the bridge and flowing air as elements of a single dynamic system; and all of the governing equations are integrated numerically, simultaneously, and interactively. It is shown that the present simulation predicts the same onset of flutter as the analysis of Fung. Unlike Fung’s analysis, the present analysis provides the solution in the time domain, is not restricted to periodic motions or linear equations of motion, and provides post-onset behavior as long as the effective angles of attack are not large enough to produce stall. As a consequence, the present analysis can be a very effective tool for the design of flutter-suppressing control systems. Because the equations are solved numerically, nonlinear supports do not present a problem. In the present work, it is shown how the nonlinear springs lead to limit-cycle responses.


2007 ◽  
Vol 129 (4) ◽  
pp. 417-424 ◽  
Author(s):  
A. R. Ohadi ◽  
G. Maghsoodi

In this paper, vibration behavior of engine on the nonlinear hydraulic engine mount, including inertia track and decoupler, is studied. In this regard, after introducing the nonlinear factors of this mount (i.e., inertia and decoupler resistances in turbulent region), the vibration governing equations of engine on one hydraulic engine mount are solved and the effect of nonlinearity is investigated. In order to have a comparison between the rubber and the hydraulic engine mounts, a six-degree-of-freedom four-cylinder V-shaped engine under shaking and balancing mass forces and torques is considered. By solving the time domain nonlinear equations of motion of the engine on three inclined mounts, translational and rotational motions of an engine body are obtained for different engine speeds. Transmitted base forces are also determined for both types of engine mount. Comparison of rubber and hydraulic mounts indicates the efficiency of a hydraulic one in the low-frequency region.


Author(s):  
Yijun Wang ◽  
Alex van Deyzen ◽  
Benno Beimers

In the field of port design there is a need for a reliable but time-efficient method to assess the behavior of moored ships in order to determine if further detailed analysis of the behavior is required. The response of moored ships induced by gusting wind and/or waves is dynamic. Excessive motion response may cause interruption of the (un)loading operation. High line tension may cause lines to snap, introducing dangerous situations. A (detailed) Dynamic Mooring Analysis (DMA), however, is often a time-consuming and expensive exercise, especially when responses in many different environmental conditions need to be assessed. Royal HaskoningDHV has developed a time-efficient computational tool in-house to assess the wave (sea or swell) induced dynamic response of ships moored to exposed berths. The mooring line characteristics are linearized and the equations of motion are solved in the frequency domain with both the 1st and 2nd wave forces taken into account. This tool has been termed Less=Moor. The accuracy and reliability of the computational tool has been illustrated by comparing motions and mooring line forces to results obtained with software that solves the nonlinear equations of motion in the time domain (aNySIM). The calculated response of a Floating Storage and Regasification Unit (FSRU) moored to dolphins located offshore has been presented. The results show a good comparison. The computational tool can therefore be used to indicate whether the wave induced response of ships moored at exposed berths proves to be critical. The next step is to make this tool suitable to assess the dynamic response of moored ships with large wind areas, e.g. container ships, cruise vessels, RoRo or car carriers, to gusting wind. In addition, assessment of ship responses in a complicated wave field (e.g. with reflected infra-gravity waves) also requires more research effort.


2003 ◽  
Vol 125 (1) ◽  
pp. 12-17 ◽  
Author(s):  
I. Hagiwara ◽  
D. W. Wang ◽  
Q. Z. Shi ◽  
R. S. Rao

A new analytical model is developed for the reduction of noise inside a cavity using distributed piezoelectric actuators. A modal coupling method is used to establish the governing equations of motion of the fully coupled acoustics-structure-piezoelectric patch system. Two performance functions relating “global” and “local” optimal control of sound pressure levels (SPL) respectively are applied to obtain the control laws. The discussions on associated control mechanism show that both the mechanisms of modal amplitude suppression and modal rearrangement may sometimes coexist in the implementation of optimal noise control.


Author(s):  
Daniel A. Tortorelli

Abstract Adjoint and direct differentiation methods are used to formulate design sensitivities for the steady-state response of damped linear elastodynamic systems that are subject to periodic loads. Variations of a general response functional are expressed in explicit form with respect to design field perturbations. Modal analysis techniques which uncouple the equations of motion are used to perform the analyses. In this way, it is possible to obtain closed form relations for the sensitivity expressions. This eliminates the need to evaluate the adjoint response and psuedo response (these responses are associated with the adjoint and direct differentiation sensitivity problems) over the time domain. The sensitivities need not be numerically integrated over time, thus they are quickly computed. The methodology is valid for problems with proportional as well as non-proportional damping. In an example problem, sensitivities of steady-state vibration amplitude of a crankshaft subject to engine firing loads are evaluated with respect to the stiffness, inertial, and damping parameters which define the shaft. Both the adjoint and direct differentiation methods are used to compute the sensitivities. Finite difference sensitivity approximations are also calculated to validate the explicit sensitivity results.


Author(s):  
Kimihio Yasuda ◽  
Keisuke Kamiya

Abstract In previous papers the authors proposed a new experimental identification technique applicable to elastic structures. The proposed technique is based on the principle of harmonic balance, and can be classified as the frequency domain technique. The technique requires the excitation force to be periodic. This is in some cases a restriction. So another technique free from this restriction is of use. In this paper, as a first step for developing such techniques, a technique applicable to beams is proposed. The proposed technique can be classified as the time domain one. Two variations of the technique are proposed, depending on what methods are used for estimating the parameters of the governing equations. The first method is based on the usual least square method. The second is based on solving a minimization problem with constraints. The latter usually yields better results. But in this method, an iteration procedure is used, which requires initial values for the parameters. To determine the initial values, the first method can be used. So both methods are useful. Finally the applicability of the proposed technique is confirmed by numerical simulation and experiments.


Author(s):  
Hamid R. Hamidzadeh ◽  
Ehsan Sarfaraz

The linear in-plane free vibration of a thin, homogeneous, viscoelastic, rotating annular disk is investigated. In the development of an analytical solution, two dimensional elastodynamic theory is employed and the viscoelastic material for the medium is allowed by assuming complex elastic moduli. The general governing equations of motion are derived by implementing plane stress theory. Natural frequencies are computed for several modes at specific radius ratios with fixed-free boundary conditions and modal loss factors for different damping ratios are determined. The computed results were compared to previously established results. It was observed that the effects of rotational speed and hysteretic damping ratio on natural frequency and elastic stability of the rotating disks were related to the mode of vibration and type of circumferential wave occurring.


2016 ◽  
Vol 5 (1) ◽  
pp. 29
Author(s):  
Madhura K R ◽  
Uma M S

<p><span lang="EN-IN">The flow of an unsteady incompressible electrically conducting fluid with uniform distribution of dust particles in a constricted channel has been studied. The medium is assumed to be porous in nature. The governing equations of motion are treated analytically and the expressions are obtained by using variable separable and Laplace transform techniques. The influence of the dust particles on the velocity distributions of the fluid are investigated for various cases and the results are illustrated by varying parameters like Hartmann number, deposition thickness on the walls of the cylinder and the permeability of the porous medium on the velocity of dust and fluid phase.</span></p>


Sign in / Sign up

Export Citation Format

Share Document