Bridge Surface Roughness Identified from the Displacement Influence Lines of the Contact Points by Two Connected Vehicles

Author(s):  
Y. B. Yang ◽  
B. Q. Wang ◽  
Z. L. Wang ◽  
K. Shi ◽  
H. Xu ◽  
...  

In this study, a new, effective procedure is proposed for identifying the surface roughness from the responses recorded of two connected test vehicles moving over the bridge. Central to this study is the proposal of a simple static correlation formula for relating the dynamic deflections of the two vehicles’s contact points on the bridge, via the displacement influence lines (DILs). With the aid of this relation, the roughness formula for estimating the bridge surface profile is derived using the responses of the leading and following vehicles. It does not require any prior knowledge of the dynamic properties of the bridge. The efficacy of the proposed procedure is validated for both the simple and three-span continuous beams by the finite element method (FEM). Also, a parametric study is conducted for various physical properties of the test vehicles. It is confirmed that the roughness profiles back-calculated from the proposed formula agree excellently with the assumed ones for both the simple and continuous beams. For use in practice, the two connected test vehicles should not be designed too heavy and not to move at too fast speeds, in order to reduce the impact on the bridge.

Author(s):  
Jan Steininger ◽  
Stefan Medvecky ◽  
Robert Kohar ◽  
Tomas Capak

The article deals with an optimization procedure of roller elements geometry with regard to durability of spherical roller bearings. The aim of the article is to examine the impact of change of the roller elements inner geometry on durability and reliability of spherical roller bearings; the contact strain along a spherical roller by means of the Finite Element Method at contact points of components of a spherical roller bearing by means of designed 3D parametric models. The most appropriate shape of roller elements inner geometry of a bearing from the standpoint of calculated durability was determined based on results of the contact analyses.


2016 ◽  
Vol 9 (6) ◽  
pp. 842-855 ◽  
Author(s):  
J. R. BUENO ◽  
◽  
D. D. LORIGGIO ◽  

Abstract This article examines numerically the flexibility influence of support beams in static response and dynamic properties of a symmetric plate formed by massive slabs of reinforced concrete in elastic linear regime, using the Finite Element Method. In the static response the variation of bending mo-ments and displacements are evaluated, which depend on the relationship between the flexibility of the slab and the beam. The evaluation of dynamic properties is held in undamped free vibration, through which the vibration modes and the values of the natural frequencies is obtained, which are compared with the limits of the Brazilian standard code for design of concrete structures. Results show that the response may show great variation due to the change in the relationship between bending stiffness of the slabs and the beams.


2018 ◽  
Vol 196 ◽  
pp. 01055
Author(s):  
Sławomir Dudziak ◽  
Zofia Kozyra

Dynamic analyses play an important role in the process of designing buildings in the vicinity of transportation routes. The Finite Element Method is the most popular modelling technique, because it allows to simulate the structure response in the higher frequency range properly. However, the results of such analyses depend on many factors and can differ a lot. This paper discusses the impact of the building mass estimation and neglecting or including damping in the analysis on the assessment of influence of vibrations due to traffic on people.


2012 ◽  
Vol 190-191 ◽  
pp. 23-27
Author(s):  
Jin Sha ◽  
Zhi Yuan Yao ◽  
Yang Jiao

This paper proposes an ultrasonic knife system for MEMS packaging. The ultrasonic knife system is consisted of an ultrasonic transducer, a cutter and a gripper feeder. The ultrasonic transducer engenders high frequency vibration, which lead to the resonance of the structure. Amplitude transformer can magnify the amplitude. By the impact and collision of the cutter, the material can be cut through, and the high temperature created by high-frequency vibration can do the welding. The structure is designed and optimized by the finite element method, and a model machine is produced. According to the experimental results, the ultrasonic knife system has the virtues of high cutting force and better wedding feature, which are suitable for MEMS packaging.


2009 ◽  
Vol 294 ◽  
pp. 27-38 ◽  
Author(s):  
Fabian Ferrano ◽  
Marco Speich ◽  
Wolfgang Rimkus ◽  
Markus Merkel ◽  
Andreas Öchsner

This paper investigates the mechanical properties of a new type of hollow sphere structure. For this new type, the sphere shell is perforated by several holes in order to open up the inner sphere volume and surface. The mechanical behaviour of perforated sphere structures under large deformations and strains in a primitive cubic arrangement is numerically evaluated by using the finite element method for different hole diameters and different joining techniques.


2012 ◽  
Vol 594-597 ◽  
pp. 387-390
Author(s):  
Yu Hu ◽  
Qiang Feng

With the saturated - unsaturated seepage theory, Hualianshu landslide is seepage numerical simulated by the finite element method .The changes of Hualianshu landslide seepage are subject to the impact of rainfall and reservoir water level's changes.The formation and variation of the slope seepage field under rainfall infiltration have been come to, providing a basis for analysis of slope stability and landslide prediction.


1997 ◽  
Vol 119 (3) ◽  
pp. 549-555 ◽  
Author(s):  
L. Lunde ◽  
K. To̸nder

The lubrication of isotropic rough surfaces has been studied numerically, and the flow factors given in the so-called Average Flow Model have been calculated. Both pressure flow and shear flow are considered. The flow factors are calculated from a small hearing part, and it is shown that the flow in the interior of this subarea is nearly unaffected by the bearing part’s boundary conditions. The surface roughness is generated numerically, and the Reynolds equation is solved by the finite element method. The method used for calculating the flow factors can be used for different roughness patterns.


2013 ◽  
Vol 368-370 ◽  
pp. 756-759
Author(s):  
Jing Ma ◽  
Wen Sheng Chen ◽  
Xue Feng Hu

Based on the Finite Element Method ,a model has been built to study the impact of rigid pile composite foundation with lateral unloading,then obtained a conclusion about the horizontal displacement during excavating.


Author(s):  
Bettina Albers ◽  
Stavros A. Savidis ◽  
H. Ercan Taşan ◽  
Otto von Estorff ◽  
Malte Gehlken

The dynamical investigation of two-component poroelastic media is important for practical applications. Analytic solution methods are often not available since they are too complicated for the complex governing sets of equations. For this reason, often some existing numerical methods are used. In this work results obtained with the finite element method are opposed to those obtained by Schanz using the boundary element method. Not only the influence of the number of elements and time steps on the simple example of a poroelastic column but also the impact of different values of the permeability coefficient is investigated.


Author(s):  
Bogdan Szturomski ◽  
Radosław Kiciński

The paper presents simulations of the state of stress and deformation of the Kilo class submarine hull loaded from pressure wave of non-contact mine explosion. To accomplish the task the finite element method was used. Pressure wave was described by T. L. Geers’a and K. S. Hunter model. The way of modeling the pressure wave using the acoustic medium implemented to CAE programs was shown. To describe the material an elastic-plastic model of Jonson-Cook which takes into account the speed of deformation was used. The paper presents pressure distribution on the Kilo type submarine hull exposed on 100 kg of TNT explosion load in front of the bow of the ship.


Sign in / Sign up

Export Citation Format

Share Document