Design and Implementation of Content-Based Natural Image Retrieval Approach Using Feature Distance

2020 ◽  
Vol 20 (02) ◽  
pp. 2050014
Author(s):  
S. L. Arunlal ◽  
N. Santhi ◽  
K. Ramar

Generally, the database is a gathering of data that is arranged for simple storage, retrieval and modernize. This data comprises of numerous structures like text, table, and image, outline and chart and so on. Content-based image retrieval (CBIR) is valuable for calculating the huge amount of image databases and records and for distinguishes retrieving similar images. Rather than text-based searching, CBIR effectively recovers images that are similar like query image. CBIR assumes a significant role in various areas including restorative finding, industry estimation, geographical information satellite frameworks (GIS frameworks), and biometrics; online searching and authentic research, etc. Here different medical database images are considered to the CBIR procedure is done by the proposed strategy. The proposed method considers the input features are shape, texture feature, wavelet feature, and SIFT feature. To retrieve the input image based on the features, the suggested method utilizes artificial neural network (ANN) structure. Back-propagation technique, which is an organizational structure for learning is utilized for training the neural network framework. Trial demonstrates that the proposed work improves the results of the retrieval system. From the outcomes minimizes the image retrieval time and maximum Precision 87.3% in distance based ANN process.

Author(s):  
Priyesh Tiwari ◽  
Shivendra Nath Sharan ◽  
Kulwant Singh ◽  
Suraj Kamya

Content based image retrieval (CBIR), is an application of real-world computer vision domain where from a query image, similar images are searched from the database. The research presented in this paper aims to find out best features and classification model for optimum results for CBIR system.Five different set of feature combinations in two different color domains (i.e., RGB & HSV) are compared and evaluated using Neural Network Classifier, where best results obtained are 88.2% in terms of classifier accuracy. Color moments feature used comprises of: Mean, Standard Deviation,Kurtosis and Skewness. Histogram features is calculated via 10 probability bins. Wang-1k dataset is used to evaluate the CBIR system performance for image retrieval.Research concludes that integrated multi-level 3D color-texture feature yields most accurate results and also performs better in comparison to individually computed color and texture features.


With tremendous growth in social media and digital technologies, generation, storing and transfer of huge amount of information over the internet is on the rise. Images or visual mode of communication have been prevailing and widely accepted as a mode of communication since ages. And with the growth of internet, the rate at which images are generated is growing exponentially. But the methods used to retrieve images are still very slow and inefficient, compared to the rate of increase in image databases. To cope up with this explosive increase in images, this information age has seen huge research advancement in Content Based Image Retrieval (CBIR). CBIR systems provide a way of utilizing the 3 major ways in which content is portrayed in images, those are shape, texture and color. In CBIR system, features are extracted from query image and similarity is found with features stored in database for retrieval. This provides an objective way of image retrieval, which is more efficient compared to subjective human annotation. Application specific CBIR systems have been developed and perform really well, but Generic CBIR systems are still under developed. Block Truncation Coding (BTC) has been chosen as a feature extractor. BTC applied directly on input image provides color content-based features of image and BTC applied after applying LBP on the image provide texture content-based features of image. Previous work consists of either color, shape or texture, but usage of more than one descriptor is still in research and might give better performance. The paper presents framework for color and texture feature fusion in content-based image retrieval using block truncation coding with color spaces. Experimentation is carried out on Wang Dataset of 1000 images consisting of 10 classes. Each class has 100 images in it. Obtained results have shown performance improvement using fusion of BTC extracted color features and texture features extracted with BTC applied on Local Binary Patterns (LBP). Conversion of color space from RGB to LUV is done using Kekre's LUV.


Author(s):  
Shikha Bhardwaj ◽  
Gitanjali Pandove ◽  
Pawan Kumar Dahiya

Background: In order to retrieve a particular image from vast repository of images, an efficient system is required and such an eminent system is well-known by the name Content-based image retrieval (CBIR) system. Color is indeed an important attribute of an image and the proposed system consist of a hybrid color descriptor which is used for color feature extraction. Deep learning, has gained a prominent importance in the current era. So, the performance of this fusion based color descriptor is also analyzed in the presence of Deep learning classifiers. Method: This paper describes a comparative experimental analysis on various color descriptors and the best two are chosen to form an efficient color based hybrid system denoted as combined color moment-color autocorrelogram (Co-CMCAC). Then, to increase the retrieval accuracy of the hybrid system, a Cascade forward back propagation neural network (CFBPNN) is used. The classification accuracy obtained by using CFBPNN is also compared to Patternnet neural network. Results: The results of the hybrid color descriptor depict that the proposed system has superior results of the order of 95.4%, 88.2%, 84.4% and 96.05% on Corel-1K, Corel-5K, Corel-10K and Oxford flower benchmark datasets respectively as compared to many state-of-the-art related techniques. Conclusion: This paper depict an experimental and analytical analysis on different color feature descriptors namely, Color moment (CM), Color auto-correlogram (CAC), Color histogram (CH), Color coherence vector (CCV) and Dominant color descriptor (DCD). The proposed hybrid color descriptor (Co-CMCAC) is utilized for the withdrawal of color features with Cascade forward back propagation neural network (CFBPNN) is used as a classifier on four benchmark datasets namely Corel-1K, Corel-5K and Corel-10K and Oxford flower.


2015 ◽  
Vol 766-767 ◽  
pp. 1076-1084
Author(s):  
S. Kathiresan ◽  
K. Hariharan ◽  
B. Mohan

In this study, to predict the surface roughness of stainless steel-304 in Magneto rheological Abrasive flow finishing (MRAFF) process, an artificial neural network (ANN) and regression models have been developed. In this models, the parameters such as hydraulic pressure, current to the electromagnet and number of cycles were taken as variables of the model.Taguchi’s technique has been used for designing the experiments in order to observe the different values of surface roughness . A neural network with feed forward with the help of back propagation was made up of 27 input neurons, 7 hidden neurons and one output neuron. The 6 sets of experiments were randomly selected from orthogonal array for training and residuals were used to analyze the performance. To check the validity of regression model and to determine the significant parameter affecting the surface roughness, Analysis of variance (ANOVA) andF-test were made. The numerical analysis depict that the current to the electromagnet was an paramount parameter on surface roughness.Key words: MRAFF, ANN, Regression analysis


2022 ◽  
Vol 23 (1) ◽  
pp. 116-128
Author(s):  
Baydaa Khaleel

Image retrieval is an important system for retrieving similar images by searching and browsing in a large database. The image retrieval system can be a reliable tool for people to optimize the use of image accumulation, and finding efficient methods to retrieve images is very important. Recent decades have marked increased research interest in field image retrieval. To retrieve the images, an important set of features is used. In this work, a combination of methods was used to examine all the images and detect images in a database according to a query image. Linear Discriminant Analysis (LDA) was used for feature extraction of the images into the dataset. The images in the database were processed by extracting their important and robust features and storing them in the feature store. Likewise, the strong features were extracted for specific query images. By using some Meta Heuristic algorithms such as Cuckoo Search (CS), Ant Colony Optimization (ACO), and using an artificial neural network such as single-layer Perceptron Neural Network (PNN), similarity was evaluated. It also proposed a new two method by hybridized PNN and CS with fuzzy logic to produce a new method called Fuzzy Single Layer Perceptron Neural Network (FPNN), and Fuzzy Cuckoo Search to examine the similarity between features for query images and features for images in the database. The efficiency of the system methods was evaluated by calculating the precision recall value of the results. The proposed method of FCS outperformed other methods such as (PNN), (ACO), (CS), and (FPNN) in terms of precision and image recall. ABSTRAK: Imej dapatan semula adalah sistem penting bagi mendapatkan imej serupa melalui carian imej dan melayari pangkalan besar data. Sistem dapatan semula imej ini boleh dijadikan alat boleh percaya untuk orang mengoptimum penggunaan pengumpulan imej, dan kaedah pencarian yang berkesan bagi mendapatkan imej adalah sangat penting. Beberapa dekad yang lalu telah menunjukan banyak penyelidikan dalam bidang imej dapatan semula. Bagi mendapatkan imej-imej ini, ciri-ciri set penting telah digunakan. Kajian ini menggunakan beberapa kaedah bagi memeriksa semua imej dan mengesan imej dalam pangkalan data berdasarkan imej carian. Kami menggunakan Analisis Diskriminan Linear (LDA) bagi mengekstrak ciri imej ke dalam set data. Imej-imej dalam pangkalan data diproses dengan mengekstrak ciri-ciri penting dan berkesan daripadanya dan menyimpannya dalam simpanan ciri. Begitu juga, ciri-ciri penting ini diekstrak bagi imej carian tertentu. Persamaan dinilai melalui beberapa algoritma Meta Heuristik seperti Carian Cuckoo (CS), Pengoptimuman Koloni Semut (ACO), dan menggunakan lapisan tunggal rangkaian neural buatan seperti Rangkaian Neural Perseptron (PNN). Dua cadangan baru dengan kombinasi hibrid PNN dan CS bersama logik kabur bagi menghasilkan kaedah baru yang disebut Lapisan Tunggal Kabur Rangkaian Neural Perceptron (FPNN), dan Carian Cuckoo Kabur bagi mengkaji persamaan antara ciri carian imej dan imej pangkalan data. Nilai kecekapan kaedah sistem dinilai dengan mengira ketepatan mengingat pada dapatan hasil. Kaedah FCS yang dicadangkan ini mengatasi kaedah lain seperti (PNN), (ACO), (CS) dan (FPNN) dari segi ketepatan dan ingatan imej.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 593 ◽  
Author(s):  
Qiangjian Gao ◽  
Yingyi Zhang ◽  
Xin Jiang ◽  
Haiyan Zheng ◽  
Fengman Shen

The Ambient Compressive Strength (CS) of pellets, influenced by several factors, is regarded as a criterion to assess pellets during metallurgical processes. A prediction model based on Artificial Neural Network (ANN) was proposed in order to provide a reliable and economic control strategy for CS in pellet production and to forecast and control pellet CS. The dimensionality of 19 influence factors of CS was considered and reduced by Principal Component Analysis (PCA). The PCA variables were then used as the input variables for the Back Propagation (BP) neural network, which was upgraded by Genetic Algorithm (GA), with CS as the output variable. After training and testing with production data, the PCA-GA-BP neural network was established. Additionally, the sensitivity analysis of input variables was calculated to obtain a detailed influence on pellet CS. It has been found that prediction accuracy of the PCA-GA-BP network mentioned here is 96.4%, indicating that the ANN network is effective to predict CS in the pelletizing process.


Content-Based Image Retrieval (CBIR) is extensively used technique for image retrieval from large image databases. However, users are not satisfied with the conventional image retrieval techniques. In addition, the advent of web development and transmission networks, the number of images available to users continues to increase. Therefore, a permanent and considerable digital image production in many areas takes place. Quick access to the similar images of a given query image from this extensive collection of images pose great challenges and require proficient techniques. From query by image to retrieval of relevant images, CBIR has key phases such as feature extraction, similarity measurement, and retrieval of relevant images. However, extracting the features of the images is one of the important steps. Recently Convolutional Neural Network (CNN) shows good results in the field of computer vision due to the ability of feature extraction from the images. Alex Net is a classical Deep CNN for image feature extraction. We have modified the Alex Net Architecture with a few changes and proposed a novel framework to improve its ability for feature extraction and for similarity measurement. The proposal approach optimizes Alex Net in the aspect of pooling layer. In particular, average pooling is replaced by max-avg pooling and the non-linear activation function Maxout is used after every Convolution layer for better feature extraction. This paper introduces CNN for features extraction from images in CBIR system and also presents Euclidean distance along with the Comprehensive Values for better results. The proposed framework goes beyond image retrieval, including the large-scale database. The performance of the proposed work is evaluated using precision. The proposed work show better results than existing works.


2021 ◽  
Author(s):  
DEVIN NIELSEN ◽  
TYLER LOTT ◽  
SOM DUTTA ◽  
JUHYEONG LEE

In this study, three artificial neural network (ANN) models are developed with back propagation (BP) optimization algorithms to predict various lightning damage modes in carbon/epoxy laminates. The proposed ANN models use three input variables associated with lightning waveform parameters (i.e., the peak current amplitude, rising time, and decaying time) to predict fiber damage, matrix damage, and through-thickness damage in the composites. The data used for training and testing the networks was actual lightning damage data collected from peer-reviewed published literature. Various BP training algorithms and network architecture configurations (i.e., data splitting, the number of neurons in a hidden layer, and the number of hidden layers) have been tested to improve the performance of the neural networks. Among the various BP algorithms considered, the Bayesian regularization back propagation (BRBP) showed the overall best performance in lightning damage prediction. When using the BRBP algorithm, as expected, the greater the fraction of the collected data that is allocated to the training dataset, the better the network is trained. In addition, the optimal ANN architecture was found to have a single hidden layer with 20 neurons. The ANN models proposed in this work may prove useful in preliminary assessments of lightning damage and reduce the number of expensive experimental lightning tests.


2019 ◽  
Vol 53 (6) ◽  
pp. 27-34
Author(s):  
Tim Chen ◽  
C.Y.J. Chen

AbstractThe reproduction of meteorological waves utilizing physically based hydrodynamic models is very difficult in light of the fact that it requires enormous amounts of information, for example, hydrological and water-driven time arrangement limits, stream geometry, and balance coefficients. Accordingly, an artificial neural network (ANN) strategy utilizing a back-propagation neural network (BPNN) and a radial basis function neural network (RBFNN) is perceived as a viable option for modeling and forecasting the maximum and time variation of meteorological tsunamis in the Mekong Estuary in Vietnam. The parameters, including both the nearby climatic and breeze field factors, for finding the most extreme meteorological waves are first examined, depending on the preparation of the evolved neural systems. The time series for meteorological tsunamis are used for training and testing the models, and data for three cyclones are used for model prediction. This study finds that the proposed advanced ANN time series model is easy to utilize with display and prediction tools for simulating the time variation of meteorological tsunamis.


Sign in / Sign up

Export Citation Format

Share Document