Studies on Polyaniline/Silver Molybdate Nanocomposites

2014 ◽  
Vol 13 (01) ◽  
pp. 1450002 ◽  
Author(s):  
K. Jacinth Mispa ◽  
P. Subramaniam ◽  
R. Murugesan

Silver molybdate nanoparticles were successfully prepared by the hydrothermal process. Polyaniline–silver molybdate nanocomposites were prepared by in situ chemical oxidative polymerization technique. Silver molybdate nanoparticles and the polymer samples were characterized by conductivity studies, Fourier transform infrared spectra (FT-IR), UV-visible spectra, photoluminescence spectra, X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The electrical conductivity of PANI- Cl - increases when doped with silver molybdate nanoparticles and follows the percolation threshold.

2012 ◽  
Vol 217-219 ◽  
pp. 733-736
Author(s):  
Xiu Mei Han ◽  
Shu Ai Hao ◽  
Ying Ling Wang ◽  
Gui Fang Sun ◽  
Xi Wei Qi

Zn2SiO4:Eu3+, Dy3+ phosphors have been prepared through the sol-gel process. X-ray diffraction (XRD), thermogravimetric and ddifferential thermal analysis (TG-DTA), FT-IR spectra and photoluminescence spectra were used to characterize the resulting phosphors. The results of XRD indicated that the phosphors crystallized completely at 1000oC. In Zn2SiO4:Eu3+,Dy3+ phosphors, the Eu3+ and Dy3+ show their characteristic red(613nm, 5D0-7F2), blue (481nm, 4F9/2–6H15/2) and yellow (577nm, 4F9/2–6H13/2) emissions.


Author(s):  
B. Anandh ◽  
A. Muthuvel ◽  
M. Emayavaramban

The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the Lagenaria siceraria leaf extract. The synthesized AgNPs have characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. AgNPs formation has screened by UV-visible spectroscopy through colour conversion due to surface plasma resonance band at 427 nm. X-ray diffraction (XRD) confirmed that the resulting AgNPs are highly crystalline and the structure is face centered cubic (fcc). FT-IR spectrum indicates the presence of different functional groups present in the biomolecules capping the nanoparticles. Further, inhibitory activity of AgNPs and leaf extract were tested against human pathogens like gram-pastive (Staphylococcus aureus, Bacillus subtilis), gram-negative (Escherichia coli and Pseudomonas aeruginosa). The results indicated that the AgNPs showed moderate inhibitory actions against human pathogens than Lagenaria siceraria leaf extract, demonstrating its antimicrobial value against pathogenic diseases


2010 ◽  
Vol 113-116 ◽  
pp. 1712-1715
Author(s):  
Cheng Yu Wang ◽  
Chang Yu Liu ◽  
Jian Li

The preparation of hydrophobic CaCO3-wood composite through a double-diffusive method using dodecanoic acid as organic substrate is demonstrated. The product was characterized by the contact angle analysis, X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The mechanical properties of the product were measured. The results show that the synthesized CaCO3 fills in the wood cell and covers the surface of wood. The CaCO3-wood composite is hydrophobic. The mechanical properties of wood composite have significantly increased.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 62 ◽  
Author(s):  
Gunugunuri K. Reddy ◽  
Torin C. Peck ◽  
Charles A. Roberts

Direct decomposition of NO into N2 and O2 (2NO→N2 + O2) is recognized as the “ideal” reaction for NOx removal because it needs no reductant. It was reported that the spinel Co3O4 is one of the most active single-element oxide catalysts for NO decomposition at higher reaction temperatures, however, activity remains low below 650 °C. The present study aims to investigate new promoters for Co3O4, specifically PdO vs. PtO. Interestingly, the PdO promoter effect on Co3O4 was much greater than the PtO effect, yielding a 4 times higher activity for direct NO decomposition at 650 °C. Also, Co3O4 catalysts with the PdO promoter exhibit higher selectivity to N2 compared to PtO/Co3O4 catalysts. Several characterization measurements, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR), and in situ FT-IR, were performed to understand the effect of PdO vs. PtO on the properties of Co3O4. Structural and surface analysis measurements show that impregnation of PdO on Co3O4 leads to a greater ease of reduction of the catalysts and an increased thermal stability of surface adsorbed NOx species, which contribute to promotion of direct NO decomposition activity. In contrast, rather than remaining solely as a surface species, PtO enters the Co3O4 structure, and it promotes neither redox properties nor NO adsorption properties of Co3O4, resulting in a diminished promotional effect compared to PdO.


2020 ◽  
Vol 990 ◽  
pp. 302-305
Author(s):  
Razif Nordin ◽  
Nadia Latiff ◽  
Rizana Yusof ◽  
Wan Izhan Nawawi ◽  
M.Z. Salihin ◽  
...  

Commercial grade ZnO were sieved into particle size of 38 to 90 μm at room temperature. X-ray diffraction (XRD) pattern confirms the hexagonal wurzite structure of ZnO microparticles. Irregular shapes of ZnO microparticles were observed by scanning electron microscope (SEM). Fourier transform infrared spectra (FTIR) confirmed the presence of Zn-O band. In addition, Uv-visible spectra (UV-Vis) were empolyed to estimate the band gap energy of ZnO microparticles.


Author(s):  
R. K. Shukla ◽  
Susheel Kumar Singh ◽  
Akhilesh Tripathi

Polyaniline (PANI) is synthesized by chemical oxidative polymerization method. The, characterization were made using XRD (X-ray diffraction), FT-IR (Fourier transform spectroscopy), UV -vis (ultra-violet visible spectrophotometer) technique which confirms the synthesis of the Polyaniline. The surface morphology of Polyaniline was studied with scanning electron microscope (SEM).


2012 ◽  
Vol 557-559 ◽  
pp. 371-374
Author(s):  
Lian Liu ◽  
Teng Yu ◽  
Pei Wang ◽  
Guang Shuo Wang

Nanocomposites of poly(ε-caprolactone) (PCL) and layered double hydroxide (LDH) were prepared by in situ polymerization at low LDHs loadings in this work. The resultants were characterized by FTIR spectroscopy, X-ray diffraction (XRD), differential scanning calorimeter (DSC) and UV-visible spectroscopy (UV-vis). FTIR showed that the PCL/LDHs nanocomposites were prepared successfully by in situ polymerization and XRD spectra showed that the crystal structure did not change greatly in the presence of LDHS. DSC results confirmed that LDHs could act as nucleating agents. UV-vis spectra showed that LDHs had stronger absorbance peak than LDH. Moreover, the PCL/LDHs nanocomposites had strong anti-ultraviolet effect by introduction of LDHs into polymer matrix.


2008 ◽  
Vol 8 (9) ◽  
pp. 4743-4746 ◽  
Author(s):  
Haldorai Yuvaraj ◽  
Min Hee Woo ◽  
Eun Ju Park ◽  
Yeong-Soon Gal ◽  
Kwon Taek Lim

Poly(3-octylthiophene) (P3OT)-titanium dioxide (TiO2) nanocomposite powder where TiO2 was embedded with homogeneous dispersion was synthesized by in-situ chemical oxidative polymerization of 3-octylthiophene in the presence of TiO2 nanoparticles in supercritical carbon dioxide (scCO2), using ferric chloride as the oxidant. The synthesized materials could be obtained as dry powder upon venting of CO2 after the polymerization. The composites were subsequently characterized by FT-IR spectroscopy, transmission electron microscopy (TEM), X-ray diffraction studies (XRD), thermogravimetric analysis (TGA) and photoluminescence (PL). The incorporation of TiO2 in the composite was endorsed by FT-IR studies. TGA revealed enhanced thermal stability of P3OT/TiO2 nanocomposite compared to 3-octylthiophene. TEM analysis showed that well dispersed TiO2 nanoparticles in the polymer matrix. Photoluminescence quenching increased with increasing TiO2 concentration in the composite.


2012 ◽  
Vol 602-604 ◽  
pp. 917-920 ◽  
Author(s):  
Zhen Hui Xiao ◽  
Shui Sheng Wu ◽  
Yan Lin Sun ◽  
Yu Lin Zhao ◽  
Ya Ming Wang

Graphene was synthesized by microwave-hydrothermal chemical reduction of graphite oxide using hydrazine hydrate as the reducing agent. Graphene was characterized using X-ray diffraction, UV-visible spectrum, FT-IR spectrum and scanning electron microscopy. Results indicated that the as-prepared graphene was wrinkled and comprised fewer graphenes with a highly crystalline structure.


2013 ◽  
Vol 631-632 ◽  
pp. 150-153
Author(s):  
Ji Wei Cai ◽  
Hai Jun Niu ◽  
Xu Duo Bai

Polypyrrole/montmorillonite (PPy/MMT) particles were synthesized using an oxidative polymerization method. Then the particles were added into polymethyl methacrylate (PMMA) as additives to prepare PPy/MMT/PMMA composite. The structures and properties of the composite were characterized by FT-IR, TGA, X-ray diffraction spectroscopy, and four–probe machine. The relationship between content of PPy/MMT and conductivity was analyzed. The result shows that the amount of PPy/MMT is a key factor for improving the conductivity of composite. Furthermore, dynamic mechanical (DM) properties of composite were studied. When the PPy/MMT content reach 0.2% of composite, the storage modulus, loss function modulus, dissipation factor get highest values.


Sign in / Sign up

Export Citation Format

Share Document