Investigating the Biodegradability and Physical Properties of Starch Derived Bioplastic Films Reinforced with Nanosilica

2018 ◽  
Vol 18 (06) ◽  
pp. 1850037 ◽  
Author(s):  
Anagha Ashok ◽  
C. R. Rejeesh

This study is a pilot investigation on the effect of using nanosilica for reinforcing thermoplastic starch-based bioplastic films. An arbitrary 0.2[Formula: see text]wt.% of nanosilica particles were used to reinforce starch derived bioplastic materials and were further investigated for potential benefits. Nanosilica was extracted from rice husk and was characterized using methods like Fourier transform infrared spectroscopy (FTIR) technique and Brunauer–Emmett–Teller (BET) method. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques were used to determine the structure of nanosilica crystals. Scanning electron microscopy (SEM) technique was used to study the surface topography and composition of nano ‘silica. Both raw and reinforced bioplastic films were tested for thermal stability using thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC) tests and their performance was compared. Mechanical properties were compared using tensile and tear tests and biodegradability was assessed through enzymatic degradation analysis. It was found that the presence of nanosilica improved the bonding of polymer matrix and in turn increased the thermal stability and tear strength. Nanosilica reinforced matrix resulted in the increase of surface area than raw bioplastic matrix, which lead to high rate of enzymatic reactivity and degradation rate.

2011 ◽  
Vol 45 (25) ◽  
pp. 2595-2601 ◽  
Author(s):  
Tsuyoshi Saotome ◽  
Ken Kokubo ◽  
Shogo Shirakawa ◽  
Takumi Oshima ◽  
H. Thomas Hahn

Novel nanocomposite films of polycarbonate (PC) with fullerene derivatives, such as pristine fullerene C60 and polyhydroxylated-fullerenes, C60(OH)12 and C60(OH)36, were prepared. The optical, thermal, and mechanical properties of the composites were measured. Nanocomposite films of poly (vinyl alcohol) (PVA) with C60(OH)36 were prepared as a reference to show how improved dispersion of the nanofiller affects the overall transparency of the composites. Ultraviolet-visible spectroscopy showed that the addition of hydroxylated fullerenes did not affect visible light transmittance of the films significantly in the range of 400–800 nm. Differential scanning calorimetry (DSC) and thermo–gravimetric analysis (TGA) measurements showed the increased thermal stability of PC/C60(OH)12 film as compared to pristine PC film. This phenomenon was explained by the rigid polymer interphase regions formed around C60(OH)12 due to the plausible hydrogen bonding and hydrophobic interaction. On the other hand, the lower thermal stability of PC–C60(OH)36 was assumed to be caused by large agglomeration of the C60(OH)36 particles and the partial hydrolysis of the polycarbonate matrix. Tensile testing of the composites showed reduction in elongation at break and yield tensile strength. These results may be caused by the particle agglomerations which act as the initiation points for cracks.


2016 ◽  
Vol 34 (1) ◽  
pp. 169-176 ◽  
Author(s):  
Yifu Zhang

AbstractVanadium dioxide VO2 has been paid in recent years increasing attention because of its various applications, however, its oxidation resistance properties in air atmosphere have rarely been reported. Herein, VO2(B) nanobelts were transformed into VO2(A) and VO2(M) nanobelts by hydrothermal route and calcination treatment, respectively. Then, we comparatively studied the oxidation resistance properties of VO2(B), VO2(A) and VO2(M) nanobelts in air atmosphere by thermo-gravimetric analysis and differential thermal analysis (TGA/DTA). It was found that the nanobelts had good thermal stability and oxidation resistance below 341 °C, 408 °C and 465 °C in air, respectively, indicating that they were stable in air at room temperature. The fierce oxidation of the nanobelts occurred at 426, 507 and 645 °C, respectively. The results showed that the VO2(M) nanobelts had the best thermal stability and oxidation resistance among the others. Furthermore, the phase transition temperatures and optical switching properties of VO2(A) and VO2(M) were studied by differential scanning calorimetry (DSC) and variable temperature infrared spectra. It was found that the VO2(A) and VO2(M) nanobelts had outstanding thermochromic character and optical switching properties.


2010 ◽  
Vol 33 ◽  
pp. 168-172
Author(s):  
Song Bi ◽  
Xin Jia Su ◽  
Gen Liang Hou ◽  
Zhou Xiao ◽  
Guo Qiang Gu

Alumina/carbon nanotubes (Al2O3/CNTs) composite coating was synthesized by plasma spray employing mixtures of Al2O3-coated CNTs and nano-sized α-Al2O3 at atmosphere. This coating was characterized for the microstructure and the composition by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM), thermo gravimetric analysis (TG), differential scanning calorimetry analysis (DSC) and scanning electron microscopy (SEM). The results show that the thickness of the coating is about 0.5mm and the constituent elements were changed to α-Al2O3, CNTs and γ-Al2O3 duo to the superhigh temperature during the plasma spray process. The great mass of the mixtures were melted well and the CNTs were dispersed uniformly in the melted ceramic. The oxidation resistance and the microwave absorption properties were discussed simply to describe the functions of the composite coating.


2020 ◽  
Vol 10 (9) ◽  
pp. 3171 ◽  
Author(s):  
Roya Malekkhouyan ◽  
Saied Nouri Khorasani ◽  
Rasoul Esmaeely Neisiany ◽  
Reza Torkaman ◽  
Mohammad Sadegh Koochaki ◽  
...  

In the present study, the preparation of nanocapsules using the coaxial electrospraying method was investigated. Poly(styrene-co-acrylonitrile) (SAN) was used as a shell material and coconut-oil-based alkyd resin (CAR) as a core. Chemical structure, thermal stability, and morphology of nanocapsules were characterized by Fourier transform infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA), and field emission scanning electron microscopy (FE-SEM), respectively. In addition, the formation of the core–shell structure was approved by transmission electron microscopy (TEM) and FE-SEM micrographs of the fractured nanocapsules. Furthermore, differential scanning calorimetry tests (DSC) were carried out to investigate the reactivity of released healing agents from the nanocapsules. The prepared nanocapsules were then incorporated into the epoxy resins and applied on the surfaces of the steel panels. The effect of capsule incorporation on the properties of the coating was evaluated. The self-healing performance of the coatings in the salty and acidic media was also assessed. The FTIR results revealed the presence of both shell and core in the prepared nanocapsules and proved that no reaction occurred between them. The morphological studies confirmed that the electrosprayed nanocapsules’ mean diameter was 708 ± 252 nm with an average shell thickness of 82 nm. The TGA test demonstrated the thermal stability of nanocapsules to be up to 270 °C while the DSC results reveal a successful reaction between CAR and epoxy resin, especially in the acidic media. The electrochemical impedance spectroscopy (EIS) test results demonstrate that the best self-healing performance was achieved for the 2 and 1 wt.% nanocapsules incorporation in the NaCl, and HCl solution, respectively.


2014 ◽  
Vol 633-634 ◽  
pp. 464-467
Author(s):  
Rui Peng Jin ◽  
Zi Min Jin ◽  
Xue Qin Wang ◽  
Yu Xiu Yan ◽  
Jian Wei Tao

Outlast fiber is a kind of thermostat fiber that could absorb and release heat according to the changed environment temperature. It has been widely used in thermostat textiles. The outlast/viscose blended yarn we researched in this paper will be used in apparel fabric. As the demand in durability and comfort property of apparel fabric, we characterized the yarn by regain, tensile and damage properties, elastic property, differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). The experiment results show that the outlast/viscose blended yarns have good hydroscopicity, elastic property, temperature adjusting performance and thermal stability.


2011 ◽  
Vol 117-119 ◽  
pp. 1343-1351 ◽  
Author(s):  
Prakit Sukyai ◽  
Klana Rong Sriroth ◽  
Byoung Ho Lee ◽  
Joong Kim Hyun

The reinforcement of PLA matrix with natural fibers aims to generate the sustainable biocomposites. Kenaf fiber (KF) and bacterial cellulose (BC) were employed to reinforce and diminish the usage of PLA matrix. Particularly, BC is nano-cellulose which was anticipated to increased interfacial area and therefore low volume fractions of additives. That was consequently to attain mechanical property improvement. Thus, the incorporation of KF and BC reinforced PLA composites was investigated. The extrusion method was utilized and materials were mixed outside prior to adding. The specimens were examined mechanical testing, Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC), Thermo Gravimetric Analysis (TGA) and Scanning Electron Microscopes (SEM). The mechanical study revealed that the increment of elastic modulus increased concomitantly with the augmentation of KF content. Interestingly, PLA/KF/BC sample at ratio of 60/39/1 wt.% was efficiently to maintain tensile and flexural strength comparing to 50% reduction of without BC sample with equal fiber volume. Therefore, it could recognize that mechanical properties was improved by using low amount of nano-cellulose. This would be a high aspect ratio of BC that capable to connect between PLA matrix and KF which enhanced a large contact surface and therefore excellent coherence. The temperature dependence of storage, loss and tan delta was determined by DMA. A decrease of storage modulus was consistent with increasing of temperature, result from softening of the composites. Loss modulus was increased approximately at Tg which related to storage modulus cause. In addition, the tan delta peaks of PLA and composites were around 60°C and it did not significantly shift when emerged of fiber. DSC of both composites indicated an influence of fiber on the crystallization and enthalpy. On the other hand, glass transition and melting temperature did not significantly affect. The composites exhibited a small reduction of thermal stability when examined by TGA analysis. Notwithstanding, BC showed an improvement of thermal stability of PLA/KF/BC sample at 40 wt.% total fiber content. The linkage of BC between PLA matrix and KF was monitored by SEM.


2009 ◽  
Vol 28 (3) ◽  
pp. 179-191 ◽  
Author(s):  
Imelda Olivas-Armendariz ◽  
Perla E. García-Casillas ◽  
Alberto Martínez-Villafañe ◽  
Carlos A. Martinez-Pérez

In this work the synthesis and characterization of polyurethane (PU)-chitosan(CH) porous prepared by thermal induced phase separation (TIPS) is described, the obtained products were characterized by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC), evidence of the interaction between both polymers was acquired from infrared spectroscopy. The morphology of the scaffolds was studied by scanning electron microscopy also the mechanical properties were acquired. The results showed that the TIPS technique is appropriate for the production of PU-CH porous materials.


2006 ◽  
Vol 510-511 ◽  
pp. 534-537
Author(s):  
Kyung Shin ◽  
Song Seok ◽  
Soon Young Kweon ◽  
Il Ho Kim ◽  
Young Geun Lee ◽  
...  

The Ti-Cr systems are known to consist of BCC solid solution, C36, C14, C15 Laves phase at high temperature. Among others, BCC solid solution phase has been reported to have a high hydrogen storage capacity. However, activation, wide range of hysteresis at hydrogenation/dehydrogenation, and degradation of hydrogen capacity due to hydriding/dehydriding cycles have to be improved for its application. In this study, for improving such a problem, we added on Nb. To obtain a target materials, Ti-1Nb-10Cr, Ti-3Nb-10Cr and Ti-5Nb-10Cr specimens were prepared by planetary ball mill. The milling process was carried out under nitrogen atmosphere. Specimens synthesized were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermo gravimetric analysis/differential scanning calorimetry(TG/DSC). In order to examine hydrogen absorption kinetics, Sievert's type automatic pressure-composition- isotherm (PCI) was performed at 293, 323 , 373 and 423K under 1, 5MPa hydrogen atmosphere.


2019 ◽  
Vol 73 (3) ◽  
pp. 183-196 ◽  
Author(s):  
Nevena Vukic ◽  
Ivan Ristic ◽  
Milena Marinovic-Cincovic ◽  
Radmila Radicevic ◽  
Branka Pilic ◽  
...  

This paper presents influence of the type of carbon nanotube functionalization on properties of poly(L-lactide) (PLLA) based nanocomposite materials. For this purpose surface modifications of multi-walled carbon nanotubes (MWCNTs) were performed by chemical and irradiation techniques, while thermo gravimetric analysis, UV-Visible and Fourier-transform infrared (FT-IR) spectroscopies confirmed successful covalent functionalization. Series of PLLA bionanocom-posites with different contents of functionalized MWCNTs (0.7; 1.6; 2.1 wt%), were synthesized via ring-opening solution polymerisation of L-lactide. FT-IR analysis confirmed that grafting of L-lactide, under controlled condition, is possible to perform starting from the surface of functionalized MWCNTs. From differential scanning calorimetry results it was concluded that even low contents of chemically and irradiation functionalized MWCNTs had a significant effect on thermal properties of the prepared nanocomposites, raising the values of melting and glass transition temperatures. Thermogravimetric analysis (TGA) has shown that the degradation onset temperature for composites with chemically functionalized MWCNTs, was much higher than that for the neat poly(L-lactide) sample and composites with irradiation functionalized MWCNTs. Morphology studies by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that poly(L-lactide) covered surfaces and separated functionalized MWCNTs. Good dispersion of carbon nanotubes in polymer matrix enabled conductivity of synthesized materials, as determined by conductivity tests.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2158
Author(s):  
Nanci Vanesa Ehman ◽  
Diana Ita-Nagy ◽  
Fernando Esteban Felissia ◽  
María Evangelina Vallejos ◽  
Isabel Quispe ◽  
...  

Bio-polyethylene (BioPE, derived from sugarcane), sugarcane bagasse pulp, and two compatibilizers (fossil and bio-based), were used to manufacture biocomposite filaments for 3D printing. Biocomposite filaments were manufactured and characterized in detail, including measurement of water absorption, mechanical properties, thermal stability and decomposition temperature (thermo-gravimetric analysis (TGA)). Differential scanning calorimetry (DSC) was performed to measure the glass transition temperature (Tg). Scanning electron microscopy (SEM) was applied to assess the fracture area of the filaments after mechanical testing. Increases of up to 10% in water absorption were measured for the samples with 40 wt% fibers and the fossil compatibilizer. The mechanical properties were improved by increasing the fraction of bagasse fibers from 0% to 20% and 40%. The suitability of the biocomposite filaments was tested for 3D printing, and some shapes were printed as demonstrators. Importantly, in a cradle-to-gate life cycle analysis of the biocomposites, we demonstrated that replacing fossil compatibilizer with a bio-based compatibilizer contributes to a reduction in CO2-eq emissions, and an increase in CO2 capture, achieving a CO2-eq storage of 2.12 kg CO2 eq/kg for the biocomposite containing 40% bagasse fibers and 6% bio-based compatibilizer.


Sign in / Sign up

Export Citation Format

Share Document