scholarly journals A stable flat entropy-corrected FRW universe

2019 ◽  
Vol 16 (10) ◽  
pp. 1950159 ◽  
Author(s):  
Nasr Ahmed ◽  
Sultan Z. Alamri

In this paper, a general entropy-corrected FRW cosmological model has been presented in which a deceleration-to-acceleration transition occurs according to recent observations. We found that the case for the flat universe ([Formula: see text]), supported by observations, is the most stable one where it successfully passes all stability tests. The stability of the model has been studied through testing the sound speed, the classical and the new nonlinear energy conditions. The model predicts a positive pressure during the early-time decelerating epoch, and a negative pressure during the late-time accelerating epoch in a good agreement with cosmic history and dark energy assumption. We have investigated all possible values of the prefactors [Formula: see text] and [Formula: see text] in the corrected entropy-area relation to find the best values required for a stable flat universe. We have also made use of the evolution of the equation of state parameters [Formula: see text] in predicting the correct values of [Formula: see text] and [Formula: see text]. The jerk and density parameters have been calculated where a good agreement with observations and [Formula: see text]CDM model has been obtained. Two dark energy proposals have been investigated in this model, the entropy-corrected holographic dark energy and the modified holographic Ricci dark energy.

2020 ◽  
Vol 17 (05) ◽  
pp. 2050075
Author(s):  
Nasr Ahmed ◽  
Kazuharu Bamba ◽  
F. Salama

In this paper, we study the possibility of obtaining a stable flat dark energy-dominated universe in a good agreement with observations in the framework of Swiss-cheese brane-world cosmology. Two different brane-world cosmologies with black strings have been introduced for any cosmological constant [Formula: see text] using two empirical forms of the scale factor. In both models, we have performed a fine-tuning between the brane tension and the cosmological constant so that the Equation of state (EoS) parameter [Formula: see text] for the current epoch, where the redshift [Formula: see text]. We then used these fine–tuned values to calculate and plot all parameters and energy conditions. The deceleration–acceleration cosmic transition is allowed in both models, and the jerk parameter [Formula: see text] at late-times. Both solutions predict a future dark energy-dominated universe in which [Formula: see text] with no crossing to the phantom divide line. While the pressure in the first solution is always negative, the second solution predicts a better behavior of cosmic pressure where the pressure is negative only in the late-time accelerating era but positive in the early-time decelerating era. Such a positive-to-negative transition in the evolution of pressure helps to explain the cosmic deceleration–acceleration transition. Since black strings have been proved to be unstable by some authors, this instability can actually reflect doubts on the stability of cosmological models with black strings (Swiss-cheese type brane-worlds cosmological models). For this reason, we have carefully investigated the stability through energy conditions and sound speed. Because of the presence of quadratic energy terms in Swiss-cheese type brane-world cosmology, we have tested the new nonlinear energy conditions in addition to the classical energy conditions. We have also found that a negative tension brane is not allowed in both models of the current work as the energy density will no longer be well defined.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 205
Author(s):  
Sanjay Mandal ◽  
Avik De ◽  
Tee-How Loo ◽  
Pradyumn Kumar Sahoo

The objective of the present paper is to investigate an almost-pseudo-Ricci symmetric FRW spacetime with a constant Ricci scalar in a dynamic cosmological term Λ(t) and equation of state (EoS) ω(t) scenario. Several cosmological parameters are calculated in this setting and thoroughly studied, which shows that the model satisfies the late-time accelerating expansion of the universe. We also examine all of the energy conditions to check our model’s self-stability.


2019 ◽  
Vol 97 (10) ◽  
pp. 1075-1082 ◽  
Author(s):  
Nasr Ahmed ◽  
Sultan Z. Alamri

A new kind of evolution for cyclic models in which the Hubble parameter oscillates and remains positive has been explored in a specific f(R, T) gravity reconstruction. A singularity-free cyclic universe with negative varying cosmological constant has been obtained, which supports the role suggested for negative Λ in stopping the eternal acceleration. The cosmological solutions have been obtained for the case of a flat universe, supported by observations. The cosmic pressure grows without singular values; it is positive during the early-time decelerated expansion and negative during the late-time accelerating epoch. The time-varying equation of state parameter ω(t) shows quintom behavior and is restricted to the range –2.25 ≤ ω(t) ≲ 1/3. The validity of the classical linear energy conditions and the sound speed causality condition has been studied. The non-conventional mechanism of negative cosmological constant that are expected to address the late-time acceleration has been discussed.


2014 ◽  
Vol 11 (02) ◽  
pp. 1460006 ◽  
Author(s):  
Shin'ichi Nojiri ◽  
Sergei D. Odintsov

We consider modified gravity which may describe the early-time inflation and/or late-time cosmic acceleration of the universe. In particular, we discuss the properties of F(R), F(G), string-inspired and scalar-Einstein–Gauss–Bonnet gravities, including their FRW equations and fluid or scalar-tensor description. Simplest accelerating cosmologies are investigated and possibility of unified description of the inflation with dark energy is described. The cosmological reconstruction program which permits to get the requested universe evolution from modified gravity is developed. As some extension, massive F(R) bigravity which is ghost-free theory is presented. Its scalar-tensor form turns out to be the easiest formulation. The cosmological reconstruction method for such bigravity is presented. The unified description of inflation with dark energy in F(R) bigravity turns out to be possible.


2012 ◽  
Vol 27 (16) ◽  
pp. 1250085 ◽  
Author(s):  
ZHUO-PENG HUANG ◽  
YUE-LIANG WU

A holographic dark energy model characterized by the conformal-age-like length scale [Formula: see text] is motivated from the four-dimensional space–time volume at cosmic time t in the flat Friedmann–Robertson–Walker (FRW) universe. It is shown that when the background constituent with constant equation of state wm dominates the universe in the early time, the fractional energy density of the dark energy scales as [Formula: see text] with the equation of state given by [Formula: see text]. The value of wm is taken to be wm≃-1 during inflation, wm = ⅓ in radiation-dominated epoch and wm = 0 in matter-dominated epoch, respectively. When the model parameter d takes the normal value at order one, the fractional density of dark energy is naturally negligible in the early universe, Ω de ≪1 at a ≪1. With such an analytic feature, the model can be regarded as a single-parameter model like the ΛCDM model, so that the present fractional energy density Ω de (a = 1) can solely be determined by solving the differential equation of Ωde once d is given. We further extend the model to the general case in which both matter and radiation are present. The scenario involving possible interaction between the dark energy and the background constituent is also discussed.


2005 ◽  
Vol 20 (06) ◽  
pp. 1140-1147 ◽  
Author(s):  
E. I. GUENDELMAN ◽  
A. B. KAGANOVICH

A field theory is proposed where the regular fermionic matter and the dark fermionic matter can be different states of the same "primordial" fermion fields. In regime of the fermion densities typical for normal particle physics, the primordial fermions split into three families identified with regular fermions. When fermion energy density becomes comparable with dark energy density, the theory allows transition to new type of states. The possibility of such Cosmo-Low Energy Physics (CLEP) states is demonstrated by means of solutions of the field theory equations describing FRW universe filled with homogeneous scalar field and uniformly distributed nonrelativistic neutrinos. Neutrinos in CLEP state are drawn into cosmological expansion by means of dynamically changing their own parameters. One of the features of the fermions in CLEP state is that in the late time universe their masses increase as a3/2 (a=a(t) is the scale factor). The energy density of the cold dark matter consisting of neutrinos in CLEP state scales as a sort of dark energy; this cold dark matter possesses negative pressure and for the late time universe its equation of state approaches that of the cosmological constant. The total energy density of such universe is less than it would be in the universe free of fermionic matter at all.


2018 ◽  
Vol 15 (10) ◽  
pp. 1850168 ◽  
Author(s):  
Rashid Zia ◽  
Dinesh Chandra Maurya ◽  
Anirudh Pradhan

In this paper, spatially homogeneous and anisotropic Bianchi type-[Formula: see text] dark energy (DE) cosmological transit models with string fluid source in [Formula: see text] gravity [T. Harko et al., Phys. Rev. D 84 (2011) 024020], where [Formula: see text] is the Ricci scalar and [Formula: see text] the trace of the stress energy–momentum tensor, have been studied in the context of early time decelerating and late-time accelerating expansion of the Universe as suggested by the recent observations. The exact solutions of the field equations are obtained first by using generalized hybrid expansion law (HEL) [Formula: see text] which yields a time-dependent deceleration parameter [Formula: see text] and second by considering the metric coefficient [Formula: see text]. By using recent constraints from supernovae type-Ia union data [Cunha, arXiv:0811.2379[astro-ph]], we obtain [Formula: see text] and [Formula: see text] for transit model [Formula: see text]. The Universe has an initial singularity and is anisotropic closed and it tends to be flat at the late time, i.e. our Universe is in accelerating expansion. Our model shows a phase transition property from decelerating to accelerating. It is remarkable to mention here that our Universe is homogeneous and anisotropic in the early phase whereas it becomes homogeneous and isotropic for [Formula: see text]. We have also discussed the stability of the background solution with respect to perturbations of the metric along with the properties of future singularities in the Universe dominated by DE including the phantom-type fluid. Various physical and dynamical parameters are also calculated and investigated in terms of time and redshift both.


2017 ◽  
Vol 95 (2) ◽  
pp. 179-183 ◽  
Author(s):  
M. Vijaya Santhi ◽  
V.U.M. Rao ◽  
Y. Aditya

In this paper, we consider Bianchi type-VI0 space–time filled with anisotropic modified holographic Ricci dark energy in a scalar–tensor theory proposed by Brans–Dicke (Phys. Rev. 124, 925 (1961)). The field equations in this scalar–tensor theory, have been solved for the following physically relevant assumptions: (i) the scalar field ([Formula: see text]) is proportional to average scale factor (a(t)), (ii) expansion scalar (θ) in the model is proportional to shear scalar (σ). It has been observed that the presented universe is in an accelerating phase at the present epoch, which is in good agreement with the recent astronomical observations. We have also discussed some other properties of the obtained model.


2017 ◽  
Vol 95 (12) ◽  
pp. 1215-1218 ◽  
Author(s):  
Amir F. Bahrehbakhsh

We investigate the Friedmann–Lemaître–Robertson–Walker (FLRW) type cosmology of the induced dark energy model and illustrate that the extra terms emerging from the fifth dimension can play the role of dark energy. The model predicts the expansion with deceleration at early time and acceleration in late time for an open universe.


Sign in / Sign up

Export Citation Format

Share Document