scholarly journals Viscous coupled fluids in terms of a log-corrected equation-of-state

Author(s):  
I. Brevik ◽  
K. Myrzakulov ◽  
A. V. Timoshkin ◽  
A. Zhadyranova

In this paper, we consider a class of cosmological fluids that possess properties analogous to those of crystalline solids undergoing isotropic deformations. Our research is based on a modified log-corrected power-law equation of state in the presence of a bulk viscosity. This formalism represents a class of the so-called logotropic fluids, and allows explaining an accelerating late-time universe. In order to obtain a more detailed picture of its evolution, we add in our model a coupling of the log-corrected power-law fluid to dark matter, and study various interacting forms between them. We solve the system of equations for a modified log-power-law fluid coupled to dark matter, and obtain expressions for the log-corrected power-law energy density, and the energy density for dark matter. A comparative analysis is made with the model of a nonviscous log-corrected power-law fluid without interaction with dark matter.

2014 ◽  
Vol 29 (15) ◽  
pp. 1450078 ◽  
Author(s):  
I. Brevik ◽  
V. V. Obukhov ◽  
A. V. Timoshkin

We investigate cosmological models with a linear inhomogeneous time-dependent equation-of-state (EoS) for the dark energy, coupled with dark matter, leading to a bounce cosmology. Equivalent descriptions in terms of the EoS parameters for an exponential, a power-law, or a double exponential form of the scale factor a is obtained. The stability of the solutions is explored, by considering small perturbations around the critical points for the bounce in the early and in the late-time universe.


2006 ◽  
Vol 21 (15) ◽  
pp. 1241-1248 ◽  
Author(s):  
M. ARIK ◽  
M. C. ÇALIK

By using a linearized non-vacuum late time solution in Brans–Dicke cosmology, we account for the 75% dark energy contribution but not for approximately 23% dark matter contribution to the present day energy density of the universe.


2017 ◽  
Vol 95 (11) ◽  
pp. 1074-1085 ◽  
Author(s):  
M. Zubair ◽  
Farzana Kousar

We examine inflation in [Formula: see text] theory, where a scalar field is coupled to gravity. We have constructed [Formula: see text] models using exponential and power law potentials and study inflation for these models, which can support the early-time acceleration with a useful cosmological constant at high curvature. We have calculated the slow-roll parameters, scalar-to-tensor ratio, and spectral index for these models and analyzed them graphically to check the viability according to recent observational data. We have also presented the evolution of effective equation of state and energy density.


2005 ◽  
Vol 20 (06) ◽  
pp. 1140-1147 ◽  
Author(s):  
E. I. GUENDELMAN ◽  
A. B. KAGANOVICH

A field theory is proposed where the regular fermionic matter and the dark fermionic matter can be different states of the same "primordial" fermion fields. In regime of the fermion densities typical for normal particle physics, the primordial fermions split into three families identified with regular fermions. When fermion energy density becomes comparable with dark energy density, the theory allows transition to new type of states. The possibility of such Cosmo-Low Energy Physics (CLEP) states is demonstrated by means of solutions of the field theory equations describing FRW universe filled with homogeneous scalar field and uniformly distributed nonrelativistic neutrinos. Neutrinos in CLEP state are drawn into cosmological expansion by means of dynamically changing their own parameters. One of the features of the fermions in CLEP state is that in the late time universe their masses increase as a3/2 (a=a(t) is the scale factor). The energy density of the cold dark matter consisting of neutrinos in CLEP state scales as a sort of dark energy; this cold dark matter possesses negative pressure and for the late time universe its equation of state approaches that of the cosmological constant. The total energy density of such universe is less than it would be in the universe free of fermionic matter at all.


2013 ◽  
Vol 91 (4) ◽  
pp. 351-354 ◽  
Author(s):  
Antonio Pasqua ◽  
Surajit Chattopadhyay

In this paper, we have studied and investigated the behavior of a modified holographic Ricci dark energy (DE) model interacting with pressureless dark matter (DM) under the theory of modified gravity, dubbed logarithmic f(T) gravity. We have chosen the interaction term between DE and DM in the form Q = 3γHρm and investigated the behavior of the torsion, T, the Hubble parameter, H, the equation of state parameter, ωDE, the energy density of DE, ρDE, and the energy density contribution due to torsion, ρT, as functions of the redshift, z. We have found that T increases with the redshift, z, H increases with the evolution of the universe, ωDE has a quintessence-like behavior, and both energy densities increase going from higher to lower redshifts.


2004 ◽  
Vol 19 (33) ◽  
pp. 2479-2484 ◽  
Author(s):  
L. P. CHIMENTO ◽  
RUTH LAZKOZ

Here we discuss big rip singularities occurring in typical phantom models by violation of the weak energy condition. After that, we compare them with future late-time singularities arising in models where the scale factor ends in a constant value and there is no violation of the strong energy condition. In phantom models the equation of state is well defined along the whole evolution, even at the big rip. However, both the pressure and the energy density of the phantom field diverge. In contrast, in the second kind of model the equation of state is not defined at the big rip because the pressure bursts at a finite value of the energy density.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Surajit Chattopadhyay

We have investigated the effects of the interaction between a brane universe and the bulk in which it is embedded. Considering the effects of the interaction between a brane universe and the bulk, we have obtained the equation of state for the interacting holographic Ricci dark energy density ρΛ=3c2(H˙+2H2) in the flat universe. We have investigated the impact of c2 on the equation of state ωΛ. Also, considering the power law for of the scale factor, we have observed that nontrivial contributions of dark energy which differ from the standard matter fields confined to the brane are increasing with the evolution of the universe.


2001 ◽  
Vol 10 (02) ◽  
pp. 213-223 ◽  
Author(s):  
MICHEL CHEVALLIER ◽  
DAVID POLARSKI

Friedmann–Robertson–Walker universes with a presently large fraction of the energy density stored in an X-component with wX<-1/3, are considered. We find all the critical points of the system for constant equations of state in that range. We consider further several background quantities that can distinguish the models with different wXvalues. Using a simple toy model with a varying equation of state, we show that even a large variation of wXat small redshifts is very difficult to observe with dL(z) measurements up to z~1. Therefore, it will require accurate measurements in the range 1<z<2 and independent accurate knowledge of Ωm,0(and/or ΩX,0) in order to resolve a variable wXfrom a constant wX.


2021 ◽  
Author(s):  
Ekrem Aydiner ◽  
Isil Basaran Oz ◽  
Tekin Dereli ◽  
Mustafa Sarisaman

Abstract The late time crossover from a power-law to an exponential expansion of the Universe evolution is the major problem in today’s physical cosmology. Unless this critical transition problem is solved, it is not possible to reach a holistic theory of cosmology. In this study, we propose a simple model in the FLRW framework, where dark matter and dark energy interact through a potential. We analytically solve this model and obtain scale factor a(t) from the presented model. Mainly, employing numerical solutions we show that the scale parameter has a hybrid form which includes power and exponential terms. The numerical results clearly show that there is a time crossover tc in the scale factor a(t) curve, which indicates the transition from the power-law to the exponential expansion of the Universe. We fit these unscaled curves and obtain that scale factor behaves as a(t) ∝ t2/3 below t ≤ tc, and as a(t) ∝ exp(H0t) with H0 = 0.4 and H0 = 0.3 for the relatively weak and strong interactions above t > tc, respectively. It is the first time that we explicitly obtain a hybrid scale factor incorporating the power and exponential terms as a(t) ∝ t2/3eH0t . We conclude that the presented model can solve the late time transition problem of the Universe based on dark matter and dark energy interaction. Additionally, we numerically obtain other kinematic parameters depending upon the scale factor. We discuss the limit behaviors of all relevant cosmological parameters. Our results are completely in good agreement with observational data. Finally, we state that this work makes essential steps towards solving a critical outstanding problem of the cosmology, and has a potential to creates a paradigm for future studies in this field.


2021 ◽  
Author(s):  
Ekrem Aydiner ◽  
Isil Basaran-Oz ◽  
Tekin Dereli ◽  
Mustafa Sarisaman

Abstract The late time crossover from matter dominated era (represented power-law evolution) to the dark energy dominated era (represented exponential evolution) of the Universe evolution is the major problem in today’s physical cosmology. Unless this critical transition problem is solved, it is not possible to reach a holistic theory of cosmology. To explain this critical transition we propose a new model where the dark matter and dark energy interacting through a potential. Based on the FLRW framework we analytically solve this model and obtain the scale factor a(t). In addition, we numerically compute all cosmological quantities. We find more significant results to enlightening the physical mechanism of the critical transition. Firstly, we show that the scale factor a(t) has a hybrid form as a(t) = a0(t/t0) α e ht/t0 . This is main and important result in the presented work, which clearly indicates that the transition from the power-law to the exponential expansion of the Universe. The numerical results clearly provide that there is a time crossover tc in the scale factor a curve, which indicates the transition from the power-law to the exponential expansion of the Universe. Below t/t0 ≤ tc, matter era dominated hence time evolution of the Universe is given by a(t) ∝ (t/t0) α , on the other hand, above t/t0 > tc, the evolution is represented by a(t) ∝ exp(ht/t0). It is first time, the hybrid result for scale factor is exactly obtained from the presented model without use any approximation. Secondly, we fit the scale factor below and above tc. Surprisingly, we find that the scale factor behaves as a(t) ∝ (t/t0) 2/3 below t/t0 ≤ tc, and as a(t) ∝ exp(ht/t0) which indicates that the Hubble parameter takes the value in the interval of the around H0 = 69.5 and H0 = 73.5 km s−1Mpc−1 depend on the weak and strong interactions between dark components above t/t0 > tc, respectively. These are remarkable that α = 2/3 is completely consistent exact solution of the FLRW and re-scaled Hubble parameter H0 is the observable intervals given by Planck, CMB and SNIa data (or other combinations) for chosen interaction values are purely consistent with cosmological observations. Thirdly, we find from the model the transition point from matter dominated era to the dark energy dominated era in the cosmic time is the t0 = 9.8 Gyear which is consistent with the theoretical solution and observations. Additionally, we numerically obtain and analyse other cosmological quantities such as dimensionless Hubble parameter h, deceleration parameter q, jerk parameter j and EoS parameter w. We show that all cosmological quantities of this model are consistent observational results for the matter and dark energy dominated eras. As a result, we consider late time crossover of the Universe, we propose an interacting dark matter and dark energy model, we show that this model can explain the late time crossover phenomena of the Universe and our solutions are very good consistent with theoretical and observational results. Finally, we state that this work makes essential steps towards solving a critical outstanding problem of the cosmology, and has a potential to creates a paradigm for future studies in this field. Furthermore, the model also sheds light on the interaction mechanism of dark matter and dark energy in the Universe.


Sign in / Sign up

Export Citation Format

Share Document