REORIENTATION OF FIBRES AND LOCAL MECHANISMS OF DEFORMATION IN A WOOD-INSPIRED COMPOSITE

2012 ◽  
Vol 04 (01) ◽  
pp. 1250003
Author(s):  
E. I. SAAVEDRA FLORES ◽  
M. S. MURUGAN ◽  
M. I. FRISWELL ◽  
E. A. DE SOUZA NETO

This paper investigates the reorientation of fibres and local mechanisms of deformation in a composite material inspired by the mechanics and structure of wood cell-walls. The mechanical response of the material is calculated under tensile loading conditions by means of the computational homogenisation of a two-dimensional representative volume element (RVE) of material. Here, the fibres are represented by a periodic alternation of alumina and magnesium alloy fractions, embedded in a soft epoxy matrix. In order to validate the present multi-scale framework, we compare our numerical prediction for the reorientation of fibres in the wood cell-wall composite with experimental data, finding a good agreement for a wide range of strains. Numerical simulations show that the model is able to describe the reorientation of fibres and the different stages of local deformation and failure in the proposed wood-inspired material. Furthermore, we assess a simple expression to calculate the reorientation of fibres and the in-plane Poisson's ratio of the present composite.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jiquan Li ◽  
Yadong Jia ◽  
Taidong Li ◽  
Zhou Zhu ◽  
Hangchao Zhou ◽  
...  

Temperature greatly influences the mechanical response of acrylonitrile butadiene styrene (ABS). The tensile behavior of ABS was explored in this study. The tensile experiments were conducted at a wide range of temperatures (from 40°C to 130°C). A model was established to reveal the quantitative relationship between temperature and tensile behavior of ABS. The results of tensile experiments showed that tensile behavior of ABS exhibited glassy state and high-elastics state. The model was also divided into two parts that rely on the boundary of glass transition temperature, in which the parameters of the model were calculated by the fitting method. The model predictions showed a good agreement with the results of the experimental tensile test. This study provides the quantitative relationship between temperature and tensile behavior of ABS, which saves time and experimental costs.


1988 ◽  
Vol 61 (5) ◽  
pp. 812-827 ◽  
Author(s):  
Ramesh R. Rahalkar ◽  
Henry Tang

Abstract Based upon the Doi-Edwards theory, a simple expression has been obtained for zero-shear viscosity in terms of the plateau modulus and the crossover frequency. There are no adjustable parameters in the expression. The model is in very good agreement with the zero-shear viscosity values for linear polybutadienes, the typical discrepancy being ∼5–10%. If the model can be validated for other linear amorphous polymers, it may become possible to estimate the zero-shear viscosity by measuring a single Theological parameter (the crossover frequency).


2020 ◽  
Vol 499 (3) ◽  
pp. 4418-4431 ◽  
Author(s):  
Sujatha Ramakrishnan ◽  
Aseem Paranjape

ABSTRACT We use the Separate Universe technique to calibrate the dependence of linear and quadratic halo bias b1 and b2 on the local cosmic web environment of dark matter haloes. We do this by measuring the response of halo abundances at fixed mass and cosmic web tidal anisotropy α to an infinite wavelength initial perturbation. We augment our measurements with an analytical framework developed in earlier work that exploits the near-lognormal shape of the distribution of α and results in very high precision calibrations. We present convenient fitting functions for the dependence of b1 and b2 on α over a wide range of halo mass for redshifts 0 ≤ z ≤ 1. Our calibration of b2(α) is the first demonstration to date of the dependence of non-linear bias on the local web environment. Motivated by previous results that showed that α is the primary indicator of halo assembly bias for a number of halo properties beyond halo mass, we then extend our analytical framework to accommodate the dependence of b1 and b2 on any such secondary property that has, or can be monotonically transformed to have, a Gaussian distribution. We demonstrate this technique for the specific case of halo concentration, finding good agreement with previous results. Our calibrations will be useful for a variety of halo model analyses focusing on galaxy assembly bias, as well as analytical forecasts of the potential for using α as a segregating variable in multitracer analyses.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 189
Author(s):  
Zhanying Zheng ◽  
Sharon Shui Yee Leung ◽  
Raghvendra Gupta

Dry powder inhaler (DPI) is a device used to deliver a drug in dry powder form to the lungs. A wide range of DPI products is currently available, with the choice of DPI device largely depending on the dose, dosing frequency and powder properties of formulations. Computational fluid dynamics (CFD), together with various particle motion modelling tools, such as discrete particle methods (DPM) and discrete element methods (DEM), have been increasingly used to optimise DPI design by revealing the details of flow patterns, particle trajectories, de-agglomerations and depositions within the device and the delivery paths. This review article focuses on the development of the modelling methodologies of flow and particle behaviours in DPI devices and their applications to device design in several emerging fields. Various modelling methods, including the most recent multi-scale approaches, are covered and the latest simulation studies of different devices are summarised and critically assessed. The potential and effectiveness of the modelling tools in optimising designs of emerging DPI devices are specifically discussed, such as those with the features of high-dose, pediatric patient compatibility and independency of patients’ inhalation manoeuvres. Lastly, we summarise the challenges that remain to be addressed in DPI-related fluid and particle modelling and provide our thoughts on future research direction in this field.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1223
Author(s):  
Elisa Ficarella ◽  
Mohammad Minooei ◽  
Lorenzo Santoro ◽  
Elisabetta Toma ◽  
Bartolomeo Trentadue ◽  
...  

This article presents a very detailed study on the mechanical characterization of a highly nonlinear material, the immature equine zona pellucida (ZP) membrane. The ZP is modeled as a visco-hyperelastic soft matter. The Arruda–Boyce constitutive equation and the two-term Prony series are identified as the most suitable models for describing the hyperelastic and viscous components, respectively, of the ZP’s mechanical response. Material properties are identified via inverse analysis based on nonlinear optimization which fits nanoindentation curves recorded at different rates. The suitability of the proposed approach is fully demonstrated by the very good agreement between AFM data and numerically reconstructed force–indentation curves. A critical comparison of mechanical behavior of two immature ZP membranes (i.e., equine and porcine ZPs) is also carried out considering the information on the structure of these materials available from electron microscopy investigations documented in the literature.


2021 ◽  
Vol 13 (11) ◽  
pp. 2233
Author(s):  
Rasa Janušaitė ◽  
Laurynas Jukna ◽  
Darius Jarmalavičius ◽  
Donatas Pupienis ◽  
Gintautas Žilinskas

Satellite remote sensing is a valuable tool for coastal management, enabling the possibility to repeatedly observe nearshore sandbars. However, a lack of methodological approaches for sandbar detection prevents the wider use of satellite data in sandbar studies. In this paper, a novel fully automated approach to extract nearshore sandbars in high–medium-resolution satellite imagery using a GIS-based algorithm is proposed. The method is composed of a multi-step workflow providing a wide range of data with morphological nearshore characteristics, which include nearshore local relief, extracted sandbars, their crests and shoreline. The proposed processing chain involves a combination of spectral indices, ISODATA unsupervised classification, multi-scale Relative Bathymetric Position Index (RBPI), criteria-based selection operations, spatial statistics and filtering. The algorithm has been tested with 145 dates of PlanetScope and RapidEye imagery using a case study of the complex multiple sandbar system on the Curonian Spit coast, Baltic Sea. The comparison of results against 4 years of in situ bathymetric surveys shows a strong agreement between measured and derived sandbar crest positions (R2 = 0.999 and 0.997) with an average RMSE of 5.8 and 7 m for PlanetScope and RapidEye sensors, respectively. The accuracy of the proposed approach implies its feasibility to study inter-annual and seasonal sandbar behaviour and short-term changes related to high-impact events. Algorithm-provided outputs enable the possibility to evaluate a range of sandbar characteristics such as distance from shoreline, length, width, count or shape at a relevant spatiotemporal scale. The design of the method determines its compatibility with most sandbar morphologies and suitability to other sandy nearshores. Tests of the described technique with Sentinel-2 MSI and Landsat-8 OLI data show that it can be applied to publicly available medium resolution satellite imagery of other sensors.


1975 ◽  
Vol 21 (12) ◽  
pp. 1754-1760 ◽  
Author(s):  
John A Lott ◽  
Kathie Turner

Abstract Trinder's method for glucose has nearly all the attributes of an ideal automated colorimetric glucose oxidase procedure. The chemicals used in the color reaction with peroxidase are readily available, the solutions are stable and can be prepared by the user, the method is highly specific and largely free of interferences, the sensitivity can be adjusted by the user to cover a wide range of glucose concentrations, and the reagents are not hazardous. We found very good agreement between results by this method and by the hexokinase and Beckman Glucose Analyzer methods. The method has been modified and adapted to the AutoAnalyzer I and SMA 6/60 (Technicon) with manifolds that give very little interaction between specimens. A study of the method by the simplex technique revealed that the glucose oxidase activity in the reagent is the most critical variable.


2000 ◽  
Vol 122 (3) ◽  
pp. 147-152 ◽  
Author(s):  
Hui He ◽  
Mohamad Metghalchi ◽  
James C. Keck

A simple model has been developed to estimate the sensible thermodynamic properties such as Gibbs free energy, enthalpy, heat capacity, and entropy of hydrocarbons over a wide range of temperatures with special attention to the branched molecules. The model is based on statistical thermodynamic expressions incorporating translational, rotational and vibrational motions of the atoms. A method to determine the number of degrees of freedom for different motion modes (bending and torsion) has been established. Branched rotational groups, such as CH3 and OH, have been considered. A modification of the characteristic temperatures for different motion mode has been made which improves the agreement with the exact values for simple cases. The properties of branched alkanes up to 2,3,4,-trimthylpentane have been calculated and the results are in good agreement with the experimental data. A relatively small number of parameters are needed in this model to estimate the sensible thermodynamic properties of a wide range of species. The model may also be used to estimate the properties of molecules and their isomers, which have not been measured, and is simple enough to be easily programmed as a subroutine for on-line kinetic calculations. [S0195-0738(00)00902-X]


VLSI Design ◽  
1998 ◽  
Vol 8 (1-4) ◽  
pp. 355-360 ◽  
Author(s):  
Stephen Bennett ◽  
Christopher M. Snowden ◽  
Stavros Iezekiel

A theoretical (using rate equations) and experimental study of the nonlinear dynamics of a distributed feedback multiple quantum well laser diode is presented. The analysis is performed under direct modulation. Period doubling and period tripling are identified in both the measurements and simulations. Period doubling is found over a wide range of modulation frequencies in the laser. Computational results using rate equations show good agreement with the experimental results.


2014 ◽  
Vol 12 (2) ◽  
pp. 153-163
Author(s):  
Viktor Anishchenko ◽  
Vladimir Rybachenko ◽  
Konstantin Chotiy ◽  
Andrey Redko

AbstractDFT calculations of vibrational spectra of chlorophosphates using wide range of basis sets and hybrid functionals were performed. Good agreement between calculated and experimental vibrational spectra was reached by the combination of non-empirical functional PBE0 with both middle and large basis sets. The frequencies of the stretching vibrations of the phosphate group calculated using semi-empirical functional B3LYP for all basis sets deviate significantly from the experimental values. The number of polarization functions on heavy atoms was shown to be a key factor for the calculation of vibrational frequencies of organophosphates. The importance of consideration of all the stable rotamers for a complete assignment of fundamental modes was shown.


Sign in / Sign up

Export Citation Format

Share Document