A Facile and TGA Free Hydrothermal Synthesis of SnS Nanoparticles

NANO ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. 1750120 ◽  
Author(s):  
M. Gurubhaskar ◽  
Narayana Thota ◽  
M. Raghavender ◽  
Y. P. Venkata Subbaiah ◽  
G. Hema Chandra ◽  
...  

In this paper, we employed a simple and cost-effective thioglycolic acid (TGA) free hydrothermal method, based on thiourea hydrolysis of stannous chloride dihydrate [SnCl2.2H2O] at 160[Formula: see text]C–190[Formula: see text]C for 6[Formula: see text]h, for the synthesis of SnS nanoparticles. The effect of hydrothermal autoclave reaction temperature on various properties of SnS nanoparticles have been examined at length using X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy attached with EDAX (FE-SEM), transmission electron microscopy (TEM) and ultraviolet-visible (UV-Vis) spectroscopy. The results suggest that the crystallization of orthorhombic SnS nanoparticles, with size varying from 3[Formula: see text]nm to 5[Formula: see text]nm, formed at R[Formula: see text]C. Further, the formation of SnS phase was confirmed by an IR Sn-S characteristic bands around 2350[Formula: see text]cm[Formula: see text], 1041[Formula: see text]cm[Formula: see text] and 570[Formula: see text]cm[Formula: see text], and four distinguished Raman peaks at 95[Formula: see text]cm[Formula: see text], 160[Formula: see text]cm[Formula: see text], 189[Formula: see text]cm[Formula: see text] and 220[Formula: see text]cm[Formula: see text]. The mechanism for the formation of SnS nanoparticles have been proposed and discussed. The SnS nanoparticles have exhibited reaction temperature dependent morphological features like nanoflowers, nanoflakes, spherical nanoparticles and nanogranules. The absorbance studies indicated both strong direct and weak indirect allowed transitions for SnS nanoparticles and the associated band gaps were found to be 1.5[Formula: see text]eV and 1.19[Formula: see text]eV, respectively. The dual band gap combination of SnS would favor strong direct absorption of carriers and improved minority carrier life time due to indirect nature, which means the grown particles are suitable for ideal absorber material for solar cell applications.

Author(s):  
Is Fatimah ◽  
Putwi Widya Citradewi ◽  
Amri Yahya ◽  
Bambang Nugroho ◽  
Habibi Hidayat ◽  
...  

Abstract The composite of green synthesized gold nanoparticles (Au NPs)-doped hydroxyapatite (HA) has been prepared. The gold nanoparticles were produced via bioreduction of HAuCl4 with Clitoria ternatea flower extract, and utilized in the synthesis of hydroxyapatite using Ca(OH)2 and ammonium diphosphate as precursor. The aim of this research is to study the structural analysis of the composite and antibacterial activity test toward Eschericia coli, Staphylococcus aureus, Klebsiela pneumoniae, and Streptococcus pyogenes. In addition, the antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging method. The monitoring of gold nanoparticles formation was conducted by UV–vis spectroscopy and particle size analyses, meanwhile the synthesized composite was studied using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results showed that homogeneously dispersed gold nanoparticles in HA structure was obtained with the particle size ranging at 5-80 nm. The nanocomposite demonstrated antibacterial activity against tested bacteria. The nanocomposite expressed an antioxidant activity as shown by the DPPH scavenging activity of 66 and 58% at the concentration of 100 μg/mL and 50 μg/mL, respectively.


Author(s):  
Katarzyna Matras-Postolek ◽  
A. Zaba ◽  
S. Sovinska ◽  
D. Bogdal

Zinc sulphide (ZnS) and zinc selenide (ZnSe) and manganese-doped and un-doped with different morphologies from 1D do 3D microflowers were successfully fabricated in only a few minutes by solvothermal reactions under microwave irradiation. In order to compare the effect of microwave heating on the properties of obtained  nanocrystals, additionally the synthesis under conventional heating was conducted additionally in similar conditions. The obtained nanocrystals were systematically characterized in terms of structural and optical properties using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy (DR UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area analysis. The photocatalytic activity of ZnSe, ZnS, ZnS:Mn and ZnSe:Mn nanocrystals with different morphologies was evaluated by the degradation of methyl orange (MO) and Rhodamine 6G (R6G), respectively. The results show that Mn doped NCs samples had higher coefficient of degradation of organic dyes under ultraviolet irradiation (UV).


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Dhiraj A. Jamdade ◽  
Dishantsingh Rajpali ◽  
Komal A. Joshi ◽  
Rohini Kitture ◽  
Anuja S. Kulkarni ◽  
...  

Rapid, eco-friendly, and cost-effective one-pot synthesis of copper nanoparticles is reported here using medicinal plants like Gnidia glauca and Plumbago zeylanica. Aqueous extracts of flower, leaf, and stem of G. glauca and leaves of P. zeylanica were prepared which could effectively reduce Cu2+ ions to CuNPs within 5 h at 100°C which were further characterized using UV-visible spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, dynamic light scattering, X-ray diffraction, and Fourier-transform infrared spectroscopy. Further, the CuNPs were checked for antidiabetic activity using porcine pancreatic α-amylase and α-glucosidase inhibition followed by evaluation of mechanism using circular dichroism spectroscopy. CuNPs were found to be predominantly spherical in nature with a diameter ranging from 1 to 5 nm. The phenolics and flavonoids in the extracts might play a critical role in the synthesis and stabilization process. Significant change in the peak at ∼1095 cm−1 corresponding to C-O-C bond in ether was observed. CuNPs could inhibit porcine pancreatic α-amylase up to 30% to 50%, while they exhibited a more significant inhibition of α-glucosidase from 70% to 88%. The mechanism of enzyme inhibition was attributed due to the conformational change owing to drastic alteration of secondary structure by CuNPs. This is the first study of its kind that provides a strong scientific rationale that phytogenic CuNPs synthesized using G. glauca and P. zeylanica can be considered to develop candidate antidiabetic nanomedicine.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650045 ◽  
Author(s):  
Pei-Ying Li ◽  
Kai-Yu Cheng ◽  
Xiu-Cheng Zheng ◽  
Pu Liu ◽  
Xiu-Juan Xu

Chitosan-ionic liquid conjugation (CILC), which was prepared through the reaction of 1-(4-bromobutyl)-3-methylimidazolium bromide (BBMIB) with chitosan, was firstly used to prepare functionalized graphene composite via the chemical reduction of graphene oxide (GO). The obtained water soluble graphene-based composite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), ultraviolet-visible (UV–Vis) spectroscopy and so on. CILC-RGO showed excellent dispersion stability in water at the concentration of 2.0 mg/mL, which was stable for several months without any precipitate. This may be ascribed to the electrostatic attraction and [Formula: see text]–[Formula: see text] interaction between CILC and graphene.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2585 ◽  
Author(s):  
Ravi Mani Tripathi ◽  
Dohee Ahn ◽  
Yeong Mok Kim ◽  
Sang J. Chung

Recent developments in the area of nanotechnology have focused on the development of nanomaterials with catalytic activities. The enzyme mimics, nanozymes, work efficiently in extreme pH and temperature conditions, and exhibit resistance to protease digestion, in contrast to enzymes. We developed an environment-friendly, cost-effective, and facile biological method for the synthesis of ZnO-Pd nanosheets. This is the first biosynthesis of ZnO-Pd nanosheets. The synthesized nanosheets were characterized by UV–visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray. The d-spacing (inter-atomic spacing) of the palladium nanoparticles in the ZnO sheets was found to be 0.22 nm, which corresponds to the (111) plane. The XRD pattern revealed that the 2θ values of 21.8°, 33.3°, 47.7°, and 56.2° corresponded with the crystal planes of (100), (002), (112), and (201), respectively. The nanosheets were validated to possess peroxidase mimetic activity, which oxidized the 3,3′,5,5′-tetramethylbenzidine (TMB) substrate in the presence of H2O2. After 20 min of incubation time, the colorless TMB substrate oxidized into a dark-blue-colored one and a strong peak was observed at 650 nm. The initial velocities of Pd-ZnO-catalyzed TMB oxidation by H2O2 were analyzed by Michaelis–Menten and Lineweaver–Burk plots, resulting in 64 × 10−6 M, 8.72 × 10−9 Msec−1, and 8.72 × 10−4 sec−1 of KM, Vmax, and kcat, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
C. Massard ◽  
S. Pairis ◽  
V. Raspal ◽  
Y. Sibaud ◽  
K. O. Awitor

The feasibility of surface nanopatterning with TiO2nanotanks embedded in a nanoporous alumina template was investigated. Self-assembled anodized aluminium oxide (AAO) template, in conjunction with sol gel process, was used to fabricate this nanocomposite object. Through hydrolysis and condensation of the titanium alkoxide, an inorganic TiO2gel was moulded within the nanopore cavities of the alumina template. The nanocomposite object underwent two thermal treatments to stabilize and crystallize the TiO2. The morphology of the nanocomposite object was characterized by Field Emission Scanning Electron Microscopy (FESEM). The TiO2nanotanks obtained have cylindrical shapes and are approximately 69 nm in diameter with a tank-to-tank distance of 26 nm. X-ray diffraction analyses performed by Transmission Electron Microscopy (TEM) with selected area electron diffraction (SAED) were used to investigate the TiO2structure. The optical properties were studied using UV-Vis spectroscopy.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Deepak-George Thomas ◽  
Steven De-Alwis ◽  
Shalabh Gupta ◽  
Vitalij K. Pecharsky ◽  
Deyny Mendivelso-Perez ◽  
...  

A facile method to produce few-layer graphene (FLG) nanosheets is developed using protein-assisted mechanical exfoliation. The predominant shear forces that are generated in a planetary ball mill facilitate the exfoliation of graphene layers from graphite flakes. The process employs a commonly known protein, bovine serum albumin (BSA), which not only acts as an effective exfoliation agent but also provides stability by preventing restacking of the graphene layers. The latter is demonstrated by the excellent long-term dispersibility of exfoliated graphene in an aqueous BSA solution, which exemplifies a common biological medium. The development of such potentially scalable and toxin-free methods is critical for producing cost-effective biocompatible graphene, enabling numerous possible biomedical and biological applications. A methodical study was performed to identify the effect of time and varying concentrations of BSA towards graphene exfoliation. The fabricated product has been characterized using Raman spectroscopy, powder X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The BSA-FLG dispersion was then placed in media containing Astrocyte cells to check for cytotoxicity. It was found that lower concentrations of BSA-FLG dispersion had only minute cytotoxic effects on the Astrocyte cells.


2010 ◽  
Vol 1247 ◽  
Author(s):  
Thu V. Tran ◽  
Shinya Maenosono

AbstractAl-doped ZnO (AZO) nanoparticles (NPs) were synthesized by the solvothermal decomposition. The as-synthesized AZO NPs were characterized by X-ray diffraction and transmission electron microscopy. These NPs were well dispersible in non-polar solvents at high concentration to produce AZO nanoink. The AZO nanoparticulate films were prepared from AZO nanoink by spin coating technique. Thickness, surface morphology, optical transparency and conductivity of the films were characterized by surface profilometer, scanning electron microscopy, UV-Vis spectroscopy and Hall measurements. The AZO nanoparticlulate films had highly optical transmittance and well electrical conductivity, which are potential for optoelectronic applications.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1298 ◽  
Author(s):  
M. Cruz-Leal ◽  
O. Goiz ◽  
F. Chávez ◽  
G. F. Pérez-Sánchez ◽  
N. Hernández-Como ◽  
...  

High-porosity nanostructured amorphous tungsten OXIDE (a-WO3) films were synthesized by a Hot Filament Chemical Vapor Deposition technique (HFCVD) and then transformed into a crystalline WO3 by simple thermal annealing. The a-WO3 films were annealed at 100, 300, and 500 °C for 10 min in an air environment. The films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), and UV–vis spectroscopy. Results revealed that the a-WO3 films were highly porous, composed of cauliflower-like structures made of nanoparticles with average sizes of 12 nm. It was shown that the effect of annealing on the morphology of the a-WO3 films leads to a sintering process. However, the morphology is conserved. It was found that at annealing temperatures of 100 °C, the a-WO3 films are of an amorphous nature, while at 300 °C, the films crystallize in the monoclinic phase of WO3. The calculated bandgap for the a-WO3 was 3.09 eV, and 2.53 eV for the film annealed at 500 °C. Finally, the results show that porous WO3 films preserve the morphology and maintain the porosity, even after the annealing at 500 °C.


2010 ◽  
Vol 148-149 ◽  
pp. 845-848 ◽  
Author(s):  
Qiao Feng Han ◽  
Guo Zhu Diao ◽  
Xiao Heng Liu ◽  
Xin Wang

Zinc sulfide nanoparticles as undoped and doped with nickel have been prepared by the reaction of Zn(CH3COO)2 and Ni(CH3COO)2 with potassium O-ethyldithiocarbonate (ethyl xanthate, C2H5OCS2k) at 80 in N, N - dimethylformamide (DMF) solution for 24 h. The structures of the products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their optical properties were studied by UV-Vis spectroscopy. The photocatalytic experiment by degrading methyl orange in aqueous solution under UV light indicated that the degradation efficiency of Ni (6%)-doped ZnS nanoparticles increased to 75% with comparison to 43% of degradation efficiency for undoped ZnS nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document