Improved Thermal Conductivity and Mechanical Property of PTFE Reinforced with Al2O3

NANO ◽  
2019 ◽  
Vol 14 (05) ◽  
pp. 1950064 ◽  
Author(s):  
Min Chao ◽  
Changjuan Guo ◽  
Ailing Feng ◽  
Zhengyong Huang ◽  
Qingli Yang ◽  
...  

To achieve polymer-based composites for electronic packaging with high thermal conductivity, Al2O3 nanoplatelets were introduced into polytetrafluoroethylene (PTFE) matrix via a cold pressing and sintering method. The effect of mass content of the Al2O3 platelets on the morphology, mechanical properties, thermal conductivity and dielectric properties of the composites was investigated. The results revealed that the Al2O3/PTFE nanocomposites exhibited higher thermal conductivities, better thermal stabilities, enhanced mechanical properties with considerable dielectric properties. The largest thermal conductivity of the Al2O3/PTFE nanocomposites filled with 25[Formula: see text]wt.% Al2O3 platelets was 0.461[Formula: see text]W[Formula: see text]m[Formula: see text][Formula: see text]K[Formula: see text], increased by 85% compared with that of pure PTFE. The improved thermal conductivity of Al2O3/PTFE can be attributed to the formation of effective thermal conductance network within the PTFE matrix due to the interconnectivity of Al2O3 platelets.

Author(s):  
Peter Rodgers ◽  
Valerie Eveloy ◽  
Antoine Diana ◽  
Ismail Darawsheh ◽  
Fahad Almaskari

The thermal, mechanical, and morphological characteristics of three selected commercially available, injection-moldable, high thermal conductivity (20–32 W/m K), polyimide 66 (PA66) polymer composites from two vendors are characterized for possible heat exchange applications in electronic equipment. The fillers are found to consist of 10 μm diameter, 120–350 μm long fibers, made of carbon in two composites, and a hybrid combination of essentially carbon, oxygen, and silicon in the third composite. Fiber weight loading ranges from 63% to 69%. The hybrid, high-length fiber-reinforced material overall displays superior mechanical properties (i.e., ultimate tensile, flexural and impact strengths, and flexural modulus) compared with the other two carbon-filled composites. For the hybrid-filled and one carbon-filled material (both having a thermal conductivity of 20 W/m K), good agreement between mechanical property measurements and corresponding vendor data is obtained. For the material having the highest vendor-specified thermal conductivity (i.e., 32 W/m K) and weight filler fraction (i.e., 69%), mechanical properties are up to 37% lower than corresponding vendor data. The heat transfer rates of parallel plate, cross-flow air–water heat exchanger prototypes made of the three PA66 materials are comparable to that of an aluminum prototype having the same geometry. Based on the combined heat transfer and mechanical property characterization results, the hybrid, long fiber-filled PA66 polymer composite appears to have the best combination of mechanical and heat transfer characteristics, for potential use in electronics heat exchange applications.


2022 ◽  
Author(s):  
Dong Wang ◽  
Dingyao Liu ◽  
JianHua Xu ◽  
JiaJun Fu ◽  
Kai Wu

It is still a formidable challenge to develop ideal thermal dissipation materials with simultaneous high thermal conductivity, excellent mechanical softness and toughness, and spontaneous self-healing. Herein, we report the introduction...


1990 ◽  
Vol 203 ◽  
Author(s):  
Ellice Y. Luh ◽  
Leonard E. Dolhert ◽  
Jack H. Enloe ◽  
John W. Lau

ABSTRACTCharacteristics such as CTE close to that of silicon, high thermal conductivity, and good dielectric properties make aluminum nitride (AIN) an excellent dielectric for packaging silicon-based high density multichip interconnects. However, there remains many aspects of its behavior that have not been characterized. One such example is the behavior of the various metallizations used within a package. As with A12O3, these metallizations must contribute toward a hermetic seal separating the die from the environment. However, the chemical behavior of the metallization systems used for A12O3 may not be compatible with non-oxide ceramics such as AIN. Consequently, these chemical interactions are investigated in view of the requirements for each application within electronic packages. Hermeticity testing results are also included in the discussion.


RSC Advances ◽  
2014 ◽  
Vol 4 (83) ◽  
pp. 44282-44290 ◽  
Author(s):  
Jun Hou ◽  
Guohua Li ◽  
Na Yang ◽  
Lili Qin ◽  
Maryam E. Grami ◽  
...  

The fabricated surface modified boron nitride epoxy composites exhibit high thermal conductivity, superior thermal stability and good mechanical properties while retaining good electrical insulation properties.


RSC Advances ◽  
2018 ◽  
Vol 8 (40) ◽  
pp. 22846-22852 ◽  
Author(s):  
Seokgyu Ryu ◽  
Taeseob Oh ◽  
Jooheon Kim

Boron nitride (BN) particles surface-treated with different amounts of aniline trimer (AT) were used to prepare thermally conductive polymer composites with epoxy-terminated dimethylsiloxane (ETDS).


2020 ◽  
Vol 56 (3) ◽  
pp. 2241-2274
Author(s):  
S. Q. Jia ◽  
F. Yang

Abstract Copper/diamond composites have drawn lots of attention in the last few decades, due to its potential high thermal conductivity and promising applications in high-power electronic devices. However, the bottlenecks for their practical application are high manufacturing/machining cost and uncontrollable thermal performance affected by the interface characteristics, and the interface thermal conductance mechanisms are still unclear. In this paper, we reviewed the recent research works carried out on this topic, and this primarily includes (1) evaluating the commonly acknowledged principles for acquiring high thermal conductivity of copper/diamond composites that are produced by different processing methods; (2) addressing the factors that influence the thermal conductivity of copper/diamond composites; and (3) elaborating the interface thermal conductance problem to increase the understanding of thermal transferring mechanisms in the boundary area and provide necessary guidance for future designing the composite interface structure. The links between the composite’s interface thermal conductance and thermal conductivity, which are built quantitatively via the developed models, were also reviewed in the last part.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2770 ◽  
Author(s):  
Dongxu Wu ◽  
Congliang Huang ◽  
Yukai Wang ◽  
Yi An ◽  
Chuwen Guo

In this work, SiC and Cu particles were utilized to enhance the thermal and mechanical properties of Al matrix composites. The ball-milling and cold-compact methods were applied to prepare Al matrix composites, and the uniform distribution of SiC and Cu particles in the composite confirms the validity of our preparation method. After characterizing the thermal conductivity and the compressibility of the prepared composites, results show that small particles have a higher potential to improve compressibility than large particles, which is attributed to the size effect of elastic modulus. The addition of SiC to the Al matrix will improve the compressibility behavior of Al matrix composites, and the compressibility can be enhanced by 100% when SiC content is increased from 0 to 30%. However, the addition of SiC particles has a negative effect on thermal conductivity because of the low thermal conductivity of SiC particles. The addition of Cu particles to Al-SiC MMCs could further slightly improve the compressibility behavior of Al-SiC/Cu MMCs, while the thermal conductivity could be enhanced by about 100% when the Cu content was increased from 0 to 30%. To meet the need for low density and high thermal conductivity in applications, it is more desirable to enhance the specific thermal conductivity by enlarging the preparation pressure and/or sintering temperature. This work is expected to supply some information for preparing Al matrix composites with low density but high thermal conductivity and high compressibility.


Nanoscale ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 3759-3768 ◽  
Author(s):  
Bohayra Mortazavi ◽  
Meysam Makaremi ◽  
Masoud Shahrokhi ◽  
Mostafa Raeisi ◽  
Chandra Veer Singh ◽  
...  

Mechanical properties, thermal conductivity, electronic and optical responses of borophene hydride, a newly synthesized 2D material are explored using the first-principles simulations.


Sign in / Sign up

Export Citation Format

Share Document