COEVOLUTIONARY DYNAMICS OF PREDATOR-PREY INTERACTIONS

2012 ◽  
Vol 05 (03) ◽  
pp. 1260015
Author(s):  
JIAN ZU ◽  
JINLIANG WANG ◽  
YASUHIRO TAKEUCHI

In this paper, with the method of adaptive dynamics, we investigate the coevolution of phenotypic traits of predator and prey species. The evolutionary model is constructed from a deterministic approximation of the underlying stochastic ecological processes. Firstly, we investigate the ecological and evolutionary conditions that allow for continuously stable strategy and evolutionary branching. We find that evolutionary branching in the prey phenotype will occur when the frequency dependence in the prey carrying capacity is not strong. Furthermore, it is found that if the two prey branches move far away enough, the evolutionary branching in the prey phenotype will induce the secondary branching in the predator phenotype. The final evolutionary outcome contains two prey and two predator species. Secondly, we show that under symmetric interactions the evolutionary model admits a supercritical Hopf bifurcation if the frequency dependence in the prey carrying capacity is very weak. Evolutionary cycle is a likely outcome of the mutation-selection processes. Finally, we find that frequency-dependent selection can drive the predator population to extinction under asymmetric interactions.

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1633 ◽  
Author(s):  
Suzanna M. Evans ◽  
Elizabeth A. Sinclair ◽  
Alistair G.B. Poore ◽  
Keryn F. Bain ◽  
Adriana Vergés

Declines in genetic diversity within a species can affect the stability and functioning of populations. The conservation of genetic diversity is thus a priority, especially for threatened or endangered species. The importance of genetic variation, however, is dependent on the degree to which it translates into phenotypic variation for traits that affect individual performance and ecological processes. This is especially important for predominantly clonal species, as no single clone is likely to maximise all aspects of performance. Here we show that intraspecific genotypic diversity as measured using microsatellites is a strong predictor of phenotypic variation in morphological traits and shoot productivity of the threatened, predominantly clonal seagrassPosidonia australis, on the east coast of Australia. Biomass and surface area variation was most strongly predicted by genotypic richness, while variation in leaf chemistry (phenolics and nitrogen) was unrelated to genotypic richness. Genotypic richness did not predict tissue loss to herbivores or epiphyte load, however we did find that increased herbivore damage was positively correlated with allelic richness. Although there was no clear relationship between higher primary productivity and genotypic richness, variation in shoot productivity within a meadow was significantly greater in more genotypically diverse meadows. The proportion of phenotypic variation explained by environmental conditions varied among different genotypes, and there was generally no variation in phenotypic traits among genotypes present in the same meadows. Our results show that genotypic richness as measured through the use of presumably neutral DNA markers does covary with phenotypic variation in functionally relevant traits such as leaf morphology and shoot productivity. The remarkably long lifespan of individualPosidoniaplants suggests that plasticity within genotypes has played an important role in the longevity of the species. However, the strong link between genotypic and phenotypic variation suggests that a range of genotypes is still the best case scenario for adaptation to and recovery from predicted environmental change.


Author(s):  
Bing Liu ◽  
Le Song ◽  
Xin Wang ◽  
Baolin Kang

In this paper, we develop a single species evolutionary model with a continuous phenotypic trait in a pulsed pollution discharge environment and discuss the effects of pollution on the individual size of the species. The invasion fitness function of a monomorphic species is given, which involves the long-term average exponential growth rate of the species. Then the critical function analysis method is used to obtain the evolutionary dynamics of the system, which is related to interspecific competition intensity between mutant species and resident species and the curvature of the trade-off between individual size and the intrinsic growth rate. We conclude that the pollution affects the evolutionary traits and evolutionary dynamics. The worsening of the pollution can lead to rapid stable evolution toward a smaller individual size, while the opposite is more likely to generate evolutionary branching and promote species diversity. The adaptive dynamics of coevolution of dimorphic species is further analyzed when evolutionary branching occurs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. A. V. Burioli ◽  
M. Hammel ◽  
N. Bierne ◽  
F. Thomas ◽  
M. Houssin ◽  
...  

AbstractSome cancers have evolved the ability to spread from host to host by transmission of cancerous cells. These rare biological entities can be considered parasites with a host-related genome. Still, we know little about their specific adaptation to a parasitic lifestyle. MtrBTN2 is one of the few lineages of transmissible cancers known in the animal kingdom. Reported worldwide, MtrBTN2 infects marine mussels. We isolated MtrBTN2 cells circulating in the hemolymph of cancerous mussels and investigated their phenotypic traits. We found that MtrBTN2 cells had remarkable survival capacities in seawater, much higher than normal hemocytes. With almost 100% cell survival over three days, they increase significantly their chances to infect neighboring hosts. MtrBTN2 also triggered an aggressive cancerous process: proliferation in mussels was ~ 17 times higher than normal hemocytes (mean doubling time of ~ 3 days), thereby favoring a rapid increase of intra-host population size. MtrBTN2 appears to induce host castration, thereby favoring resources re-allocation to the parasites and increasing the host carrying capacity. Altogether, our results highlight a series of traits of MtrBTN2 consistent with a marine parasitic lifestyle that may have contributed to the success of its persistence and dissemination in different mussel populations across the globe.


2018 ◽  
Author(s):  
Erica Ponzi ◽  
Lukas F. Keller ◽  
Timothée Bonnet ◽  
Stefanie Muff

Quantitative genetic analyses require extensive measurements of phenotypic traits, a task that is often not trivial, especially in wild populations. On top of instrumental measurement error, some traits may undergo transient (i.e. non-persistent) fluctuations that are biologically irrelevant for selection processes. These two sources of variability, which we denote here as measurement error in a broad sense, are possible causes for bias in the estimation of quantitative genetic parameters. We illustrate how in a continuous trait transient effects with a classical measurement error structure may bias estimates of heritability, selection gradients, and the predicted response to selection. We propose strategies to obtain unbiased estimates with the help of repeated measurements taken at an appropriate temporal scale. However, the fact that in quantitative genetic analyses repeated measurements are also used to isolate permanent environmental instead of transient effects, requires a re-assessment of the information content of repeated measurements. To do so, we propose to distinguish “short-term” from “long-term” repeats, where the former capture transient variability and the latter the permanent effects. We show how the inclusion of the corresponding variance components in quantitative genetic models yields unbiased estimates of all quantities of interest, and we illustrate the application of the method to data from a Swiss snow vole population.


2020 ◽  
Author(s):  
Brian Johnson ◽  
Philipp M. Altrock ◽  
Gregory J. Kimmel

AbstractPublic goods games (PGGs) describe situations in which individuals contribute to a good at a private cost, but others can free-ride by receiving their share of the public benefit at no cost. PGGs can be nonlinear, as often observed in nature, whereby either benefit, cost, or both are nonlinear functions of the available public good (PG): at low levels of PG there can be synergy whereas at high levels, the added benefit of additional PG diminishes. PGGs can be local such that the benefits and costs are relevant only in a local neighborhood or subset of the larger population in which producers (cooperators) and free-riders (defectors) co-evolve. Cooperation and defection can be seen as two extremes of a continuous spectrum of traits. The level of public good production, and similarly, the neighborhood size can vary across individuals. To better understand how distinct strategies in the nonlinear public goods game emerge and persist, we study the adaptive dynamics of production rate and neighborhood size. We explain how an initially monomorphic population, in which individuals have the same trait values, could evolve into a dimorphic population by evolutionary branching, in which we see distinct cooperators and defectors emerge, respectively characterized by high production and low neighborhood sizes, and low production and high neighborhood sizes. We find that population size plays a crucial role in determining the final state of the population, as smaller populations may not branch, or may observe extinction of a subpopulation after branching. Our work elucidates the evolutionary origins of cooperation and defection in nonlinear local public goods games, and highlights the importance of small population size effects on the process and outcome of evolutionary branching.


2019 ◽  
Author(s):  
Hiroshi C. Ito ◽  
Akira Sasaki

AbstractBiological communities are thought to have been evolving in trait spaces that are not only multi-dimensional, but also distorted in a sense that mutational covariance matrices among traits depend on the parental phenotypes of mutants. Such a distortion may affect diversifying evolution as well as directional evolution. In adaptive dynamics theory, diversifying evolution through ecological interaction is called evolutionary branching. This study analytically develops conditions for evolutionary branching in distorted trait spaces of arbitrary dimensions, by a local nonlinear coordinate transformation so that the mutational covariance matrix becomes locally constant in the neighborhood of a focal point. The developed evolutionary branching conditions can be affected by the distortion when mutational step sizes have significant magnitude difference among directions, i.e., the eigenvalues of the mutational covariance matrix have significant magnitude difference.


2019 ◽  
Vol 73 (1) ◽  
pp. 69-88 ◽  
Author(s):  
Viviane Cordovez ◽  
Francisco Dini-Andreote ◽  
Víctor J. Carrión ◽  
Jos M. Raaijmakers

Microorganisms colonizing plant surfaces and internal tissues provide a number of life-support functions for their host. Despite increasing recognition of the vast functional capabilities of the plant microbiome, our understanding of the ecology and evolution of the taxonomically hyperdiverse microbial communities is limited. Here, we review current knowledge of plant genotypic and phenotypic traits as well as allogenic and autogenic factors that shape microbiome composition and functions. We give specific emphasis to the impact of plant domestication on microbiome assembly and how insights into microbiomes of wild plant relatives and native habitats can contribute to reinstate or enrich for microorganisms with beneficial effects on plant growth, development, and health. Finally, we introduce new concepts and perspectives in plant microbiome research, in particular how community ecology theory can provide a mechanistic framework to unravel the interplay of distinct ecological processes—i.e., selection, dispersal, drift, diversification—that structure the plant microbiome.


2005 ◽  
Vol 62 (4) ◽  
pp. 758-766 ◽  
Author(s):  
Peter A Abrams ◽  
Hiroyuki Matsuda

Mathematical models examine the relationship between harvesting effort and stock size for a predator species when the prey adapts to the risk of predation. In one set of models, the prey can increase its own reproductive rate if it increases its vulnerability to the predator. In the second set of models, each of two prey species has fixed characteristics, but changes in the average characteristics within the prey trophic level occur via shifts in the relative abundance of the two species. In both models, the equilibrium predator population can increase as harvest of that species increases. In the case of two-prey models, the predator's equilibrium population always increases with an increased harvest rate if the two prey coexist and share a single resource. The predator's equilibrium population often decreases from its maximum size to zero over a very small range of harvest rates, once those rates become high enough. Because increased stock size is often used to justify increased harvest rates, this relationship poses a risk that harvest rate will increase to the point where the stock quickly collapses. The results are relevant to understanding changes in the population size of a species experiencing declining environmental conditions.


Author(s):  
Sarah Hoy ◽  
Philip Hedrick ◽  
Rolf Peterson ◽  
Leah Vucetich ◽  
Kristin Brzeski ◽  
...  

Although loss of genetic fitness is known to be severely detrimental to the viability of populations, little is known about how changes in the genetic fitness of keystone species can impact the functioning of communities and ecosystems. Here we assessed how changes in the genetic fitness of a keystone predator, grey wolves, impacted the ecosystem of Isle Royale National Park over 2-decades. The decline and subsequent resurgence of inbreeding in the wolf population led to a rise and then fall in predation rates on moose, the primary prey of wolves and dominant mammalian herbivore in this system. Those changes in predation rate led to large fluctuations in moose abundance which in turn impacted browse rates on balsam fir, the dominant forage for moose during winter and an important species in the forest. Thus, forest dynamics can be traced back to changes in the genetic health of a predator population.


Sign in / Sign up

Export Citation Format

Share Document