Effects of annealing on phase structure and magnetic characteristics of sputter deposited Ni2FeGa/Si (100) thin films

2020 ◽  
Vol 13 (08) ◽  
pp. 2051048
Author(s):  
S. Vinodh Kumar ◽  
Zhigang Wu ◽  
Zuoyu Sun ◽  
M. Manivel Raja ◽  
M. Mahendran

This paper investigates the effects of post-deposition annealing on the evolution of phase structure and magnetic properties of magnetron sputtered Ni2FeGa/Si (001) thin films. The results revealed that the as-deposited film was partially crystallized in an fcc structure, i.e. [Formula: see text] phase. Crystallization of the amorphous structure into the [Formula: see text] phase was greatly encouraged following annealing at 723 K for 1 h. Annealing at higher temperatures for the same period triggered the formation of the bcc austenitic phase, which competed with the [Formula: see text] phase simultaneously for crystallization and grain growth. The evolution of phase structure and grain size also influenced the nanomechanical properties of the films according to the nanoindentation measurement. The film annealed at 873 K for 1 h showed high hardness and elastic modulus values of 11.1 GPa and 156 GPa. The [Formula: see text] phase showed stronger ferromagnetic characteristics relative to the bcc austenite due to the richer Fe content. This leads to the saturation magnetization to be maximized at 80 emu/g when annealed at 773 K for 1 h attributed to the enhanced film crystallinity and dominant volume fraction of [Formula: see text] phase in the thin film.

2019 ◽  
Vol 58 (4) ◽  
pp. 045501 ◽  
Author(s):  
Masayuki Okugawa ◽  
Ryusuke Nakamura ◽  
Hiroshi Numakura ◽  
Akira Heya ◽  
Naoto Matsuo ◽  
...  

2003 ◽  
Vol 18 (4) ◽  
pp. 979-987 ◽  
Author(s):  
Evan A. Sperling ◽  
Rajarshi Banerjee ◽  
Gregory B. Thompson ◽  
Jason P. Fain ◽  
Peter M. Anderson ◽  
...  

The crystallographic texture, orientation relationships, coherency stress, and thermal stability of sputter-deposited Ni/Ni3Al multilayered thin films were studied as a function of bilayer period (Λ) as well as processing parameters such as substrate type, deposition temperature, and prebake conditions. Deposition onto oxidized Si or single-crystal Cu(001), NaCl(001), or KBr(001) substrates near room temperature produces multilayers with a [111] crystallographic texture along the Ni/Ni3Al interface normal and a disordered face-centered cubic structure for the Ni3Al phase. In contrast, deposition at 673 K onto NaCl(001) or KBr(001) substrates that are prebaked in vacuum at 693 K produces a chemically ordered L12 structure for the Ni3Al phase and (001) epitaxial growth. X-ray diffraction measurements of (001) multilayers with equal volume fraction of Ni and Ni3Al reveals a transition from a nearly incoherent state at Λ=40 nm to a semicoherent one at Λ 40 nm. Remarkably, (001) multilayers were observed to solutionize at 1373 K, which is approximately 100 K below that predicted by the Ni–Al phase diagram.


2004 ◽  
Vol 812 ◽  
Author(s):  
Alberto Vomiero ◽  
Stefano Frabboni ◽  
Enrico Boscolo Marchi ◽  
Alberto Quaranta ◽  
Gianantonio Della Mea ◽  
...  

AbstractTernary W-Si-N thin films have been reactively sputter-deposited from a W5Si3 target at different nitrogen partial pressures. The composition has been determined by 2.2 MeV4He+ beam, the structure by x-ray diffraction and transmission electron microscope, the chemical bonds by Fourier transform - infrared spectroscopy and the surface morphology by scanning electron microscopy. Electrical resistivity was measured by four point probe technique on the as grown films. The film as-deposited is amorphous with the Si/W ratio increasing from about 0.1 up to 0.55 with the nitrogen content going from 0 to 60 at%. The heat treatments up to 980 °C induce a loss of nitrogen in the nitrogen rich samples. Segregation of metallic tungsten occurs in the sample with low nitrogen content (W58Si21N21). Samples with high nitrogen content preserve the amorphous structure, despite of the precipitation of a more ordered phase inferred by FT-IR absorbance spectrum of the layer treated at highest temperature. The surface morphology depends upon the nitrogen content; the loss of nitrogen induces the formation of blistering and in the most nitrogen rich sample the formation of holes. Electrical resistivity preliminary results on the as grown layers range between 500 and 4750 μωcm passing from the lowest to the highest N concentration.


Author(s):  
G. Lucadamo ◽  
K. Barmak ◽  
C. Michaelsen

The subject of reactive phase formation in multilayer thin films of varying periodicity has stimulated much research over the past few years. Recent studies have sought to understand the reactions that occur during the annealing of Ni/Al multilayers. Dark field imaging from transmission electron microscopy (TEM) studies in conjunction with in situ x-ray diffraction measurements, and calorimetry experiments (isothermal and constant heating rate), have yielded new insights into the sequence of phases that occur during annealing and the evolution of their microstructure.In this paper we report on reactive phase formation in sputter-deposited lNi:3Al multilayer thin films with a periodicity A (the combined thickness of an aluminum and nickel layer) from 2.5 to 320 nm. A cross-sectional TEM micrograph of an as-deposited film with a periodicity of 10 nm is shown in figure 1. This image shows diffraction contrast from the Ni grains and occasionally from the Al grains in their respective layers.


Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


1995 ◽  
Vol 05 (C8) ◽  
pp. C8-689-C8-694 ◽  
Author(s):  
T. Hashinaga ◽  
S. Miyazaki ◽  
T. Ueki ◽  
H. Horikawa

2003 ◽  
Vol 766 ◽  
Author(s):  
A. Sekiguchi ◽  
J. Koike ◽  
K. Ueoka ◽  
J. Ye ◽  
H. Okamura ◽  
...  

AbstractAdhesion strength in sputter-deposited Cu thin films on various types of barrier layers was investigated by scratch test. The barrier layers were Ta1-xNx with varied nitrogen concentration of 0, 0.2, 0.3, and 0.5. Microstructure observation by TEM indicated that each layer consists of mixed phases of β;-Ta, bcc-TaN0.1, hexagonal-TaN, and fcc-TaN, depending on the nitrogen concentration. A sulfur- containing amorphous phase was also present discontinuously at the Cu/barrier interfaces in all samples. Scratch test showed that delamination occurred at the Cu/barrier interface and that the overall adhesion strength increased with increasing the nitrogen concentration. A good correlation was found between the measured adhesion strength and the composing phases in the barrier layer.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 341
Author(s):  
Tien Hiep Nguyen ◽  
Gopalu Karunakaran ◽  
Yu.V. Konyukhov ◽  
Nguyen Van Minh ◽  
D.Yu. Karpenkov ◽  
...  

This paper presents the synthesis of Fe–Co–Ni nanocomposites by chemical precipitation, followed by a reduction process. It was found that the influence of the chemical composition and reduction temperature greatly alters the phase formation, its structures, particle size distribution, and magnetic properties of Fe–Co–Ni nanocomposites. The initial hydroxides of Fe–Co–Ni combinations were prepared by the co-precipitation method from nitrate precursors and precipitated using alkali. The reduction process was carried out by hydrogen in the temperature range of 300–500 °C under isothermal conditions. The nanocomposites had metallic and intermetallic phases with different lattice parameter values due to the increase in Fe content. In this paper, we showed that the values of the magnetic parameters of nanocomposites can be controlled in the ranges of MS = 7.6–192.5 Am2/kg, Mr = 0.4–39.7 Am2/kg, Mr/Ms = 0.02–0.32, and HcM = 4.72–60.68 kA/m by regulating the composition and reduction temperature of the Fe–Co–Ni composites. Due to the reduction process, drastic variations in the magnetic features result from the intermetallic and metallic face formation. The variation in magnetic characteristics is guided by the reduction degree, particle size growth, and crystallinity enhancement. Moreover, the reduction of the surface spins fraction of the nanocomposites under their growth induced an increase in the saturation magnetization. This is the first report where the influence of Fe content on the Fe–Co–Ni ternary system phase content and magnetic properties was evaluated. The Fe–Co–Ni ternary nanocomposites obtained by co-precipitation, followed by the hydrogen reduction led to the formation of better magnetic materials for various magnetically coupled device applications.


Sign in / Sign up

Export Citation Format

Share Document