INTERFACE ENGINEERING IN RESISTIVE SWITCHING MEMORIES

2011 ◽  
Vol 01 (02) ◽  
pp. 141-162 ◽  
Author(s):  
SHENG-YU WANG ◽  
TSEUNG-YUEN TSENG

Electric-induced resistive switching effects have attracted wide attention for future nonvolatile memory applications known as resistive random access memory (RRAM). RRAM is one of the promising candidates because of its excellent properties including simple device structure, high operation speed, low power consumption and high density integration. The RRAM devices primarily utilize different resistance values to store the digital data and can keep the resistance state without any power. Recent advances in the understanding of the resistive switching mechanism are described by a thermal or electrochemical redox reaction near the interface between the oxide and the active metal electrode. This paper reviews the ongoing research and development activities on the interface engineering of the RRAM devices. The possible switching mechanisms for the bistable resistive switching are described. The effects of formation, composition and thickness of the interface layer on the resistive switching characteristics and consequently the memory performance are also discussed.

RSC Advances ◽  
2017 ◽  
Vol 7 (78) ◽  
pp. 49753-49758 ◽  
Author(s):  
Pengfei Hou ◽  
Zhanzhan Gao ◽  
Kaikai Ni

Resistive switching random access memory (RRAM) has recently inspired scientific and commercial interest due to its high operation speed, high scalability, and multilevel data storage potential.


2016 ◽  
Vol 1 (5) ◽  
Author(s):  
Yao-Feng Chang ◽  
Burt Fowler ◽  
Ying-Chen Chen ◽  
Fei Zhou ◽  
Xiaohan Wu ◽  
...  

Abstract Intrinsic unipolar SiOx-based resistance random access memories (ReRAM) characterization, switching mechanisms, and applications have been investigated. Device structures, material compositions, and electrical characteristics are identified that enable ReRAM cells with high ON/OFF ratio, low static power consumption, low switching power, and high readout-margin using complementary metal-oxide semiconductor transistor (CMOS)–compatible SiOx-based materials. These ideas are combined with the use of horizontal and vertical device structure designs, composition optimization, electrical control, and external factors to help understand resistive switching (RS) mechanisms. Measured temperature effects, pulse response, and carrier transport behaviors lead to compact models of RS mechanisms and energy band diagrams in order to aid the development of computer-aided design for ultralarge-v scale integration. This chapter presents a comprehensive investigation of SiOx-based RS characteristics and mechanisms for the post-CMOS device era.


2013 ◽  
Vol 1562 ◽  
Author(s):  
Mohini Verma ◽  
Yuhong Kang ◽  
Tanmay Potnis ◽  
Sushil Khadka ◽  
Tong Liu ◽  
...  

ABSTRACTTo better understand the mechanisms of creation and rupture of conductive filaments in resistive switching devices such as Cu/TaOx/Pt, with Cu and Pt being the active and inert electrodes, respectively, a device with limited supply of active metal electrode has been manufactured and electrically characterized. The limited supply of active metal has been realized by depositing a thin (delta) Cu layer (δ-Cu), 6 nm and 12 nm thick, on TaOx, resulting in a Pt/δ-Cu/TaOx/Pt device structure. The limited active metal supply i) has a direct impact on the onresistance (Ron) of the Cu bridge, and leads, after several conventional set-reset cycles, to ii) pulsating behavior, when device turns on and off repeatedly, to iii) symmetric switching behavior with respect to applied voltage polarity, when the device can be set and reset both at positive and negative bias, and to iv) volatile switching behavior.


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 341 ◽  
Author(s):  
Zongjie Shen ◽  
Chun Zhao ◽  
Yanfei Qi ◽  
Ivona Z. Mitrovic ◽  
Li Yang ◽  
...  

Resistive random access memory (RRAM), which is considered as one of the most promising next-generation non-volatile memory (NVM) devices and a representative of memristor technologies, demonstrated great potential in acting as an artificial synapse in the industry of neuromorphic systems and artificial intelligence (AI), due its advantages such as fast operation speed, low power consumption, and high device density. Graphene and related materials (GRMs), especially graphene oxide (GO), acting as active materials for RRAM devices, are considered as a promising alternative to other materials including metal oxides and perovskite materials. Herein, an overview of GRM-based RRAM devices is provided, with discussion about the properties of GRMs, main operation mechanisms for resistive switching (RS) behavior, figure of merit (FoM) summary, and prospect extension of GRM-based RRAM devices. With excellent physical and chemical advantages like intrinsic Young’s modulus (1.0 TPa), good tensile strength (130 GPa), excellent carrier mobility (2.0 × 105 cm2∙V−1∙s−1), and high thermal (5000 Wm−1∙K−1) and superior electrical conductivity (1.0 × 106 S∙m−1), GRMs can act as electrodes and resistive switching media in RRAM devices. In addition, the GRM-based interface between electrode and dielectric can have an effect on atomic diffusion limitation in dielectric and surface effect suppression. Immense amounts of concrete research indicate that GRMs might play a significant role in promoting the large-scale commercialization possibility of RRAM devices.


2019 ◽  
Vol 5 (4) ◽  
pp. 1800747 ◽  
Author(s):  
Facai Wu ◽  
Shuyao Si ◽  
Peng Cao ◽  
Wei Wei ◽  
Xiaolong Zhao ◽  
...  

2019 ◽  
Vol 15 (01) ◽  
pp. 1-8
Author(s):  
Ashish C Patel ◽  
C G Joshi

Current data storage technologies cannot keep pace longer with exponentially growing amounts of data through the extensive use of social networking photos and media, etc. The "digital world” with 4.4 zettabytes in 2013 has predicted it to reach 44 zettabytes by 2020. From the past 30 years, scientists and researchers have been trying to develop a robust way of storing data on a medium which is dense and ever-lasting and found DNA as the most promising storage medium. Unlike existing storage devices, DNA requires no maintenance, except the need to store at a cool and dark place. DNA has a small size with high density; just 1 gram of dry DNA can store about 455 exabytes of data. DNA stores the informations using four bases, viz., A, T, G, and C, while CDs, hard disks and other devices stores the information using 0’s and 1’s on the spiral tracks. In the DNA based storage, after binarization of digital file into the binary codes, encoding and decoding are important steps in DNA based storage system. Once the digital file is encoded, the next step is to synthesize arbitrary single-strand DNA sequences and that can be stored in the deep freeze until use.When there is a need for information to be recovered, it can be done using DNA sequencing. New generation sequencing (NGS) capable of producing sequences with very high throughput at a much lower cost about less than 0.1 USD for one MB of data than the first sequencing technologies. Post-sequencing processing includes alignment of all reads using multiple sequence alignment (MSA) algorithms to obtain different consensus sequences. The consensus sequence is decoded as the reversal of the encoding process. Most prior DNA data storage efforts sequenced and decoded the entire amount of stored digital information with no random access, but nowadays it has become possible to extract selective files (e.g., retrieving only required image from a collection) from a DNA pool using PCR-based random access. Various scientists successfully stored up to 110 zettabytes data in one gram of DNA. In the future, with an efficient encoding, error corrections, cheaper DNA synthesis,and sequencing, DNA based storage will become a practical solution for storage of exponentially growing digital data.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 772
Author(s):  
Seunghyun Kim ◽  
Osung Kwon ◽  
Hojeong Ryu ◽  
Sungjun Kim

This work demonstrates the synaptic properties of the alloy-type resistive random-access memory (RRAM). We fabricated the HfAlOx-based RRAM for a synaptic device in a neuromorphic system. The deposition of the HfAlOx film on the silicon substrate was verified by X-ray photoelectron spectroscopy (XPS) analysis. It was found that both abrupt and gradual resistive switching could be implemented, depending on the reset stop voltage. In the reset process, the current gradually decreased at weak voltage, and at strong voltage, it tended to decrease rapidly by Joule heating. The type of switching determined by the first reset process was subsequently demonstrated to be stable switching by successive set and reset processes. A gradual switching type has a much smaller on/off window than abrupt switching. In addition, retention maintained stability up to 2000 s in both switching cases. Next, the multiple current states were tested in the gradual switching case by identical pulses. Finally, we demonstrated the potentiation and depression of the Cu/HfAlOx/Si device as a synapse in an artificial neural network and confirmed that gradual resistive switching was suitable for artificial synapses, using neuromorphic system simulation.


2008 ◽  
Vol 93 (22) ◽  
pp. 223505 ◽  
Author(s):  
Jung Won Seo ◽  
Jae-Woo Park ◽  
Keong Su Lim ◽  
Ji-Hwan Yang ◽  
Sang Jung Kang

2018 ◽  
Vol 11 (02) ◽  
pp. 1850038 ◽  
Author(s):  
Shuangsuo Mao ◽  
Xuejiao Zhang ◽  
Bai Sun ◽  
Bing Li ◽  
Shouhui Zhu ◽  
...  

In this work, Ti and SrCoO3 (SCO) have been used for preparing the resistance random access memory (RRAM) with Ti/(SCO/Ag)[Formula: see text]/SCO/Ti ([Formula: see text], 1, 2, 3) structures. It is found that the as-prepared device with Ti/SCO/Ti ([Formula: see text]) structure represents the nonobvious resistive switching effect. However, it displays a more obvious resistive switching effect in the Ti/SCO/Ag/SCO/Ti ([Formula: see text]) device. In particular, a multi-stage switching phenomenon is observed when ultra-thin Ag films was embedded into SrCoO3 multilayer films. Finally, the multi-stage switching effect is explained by the model of conductive filaments formed step-by-step.


Sign in / Sign up

Export Citation Format

Share Document