Resistive switching characteristics and mechanisms in silicon oxide memory devices

2016 ◽  
Vol 1 (5) ◽  
Author(s):  
Yao-Feng Chang ◽  
Burt Fowler ◽  
Ying-Chen Chen ◽  
Fei Zhou ◽  
Xiaohan Wu ◽  
...  

Abstract Intrinsic unipolar SiOx-based resistance random access memories (ReRAM) characterization, switching mechanisms, and applications have been investigated. Device structures, material compositions, and electrical characteristics are identified that enable ReRAM cells with high ON/OFF ratio, low static power consumption, low switching power, and high readout-margin using complementary metal-oxide semiconductor transistor (CMOS)–compatible SiOx-based materials. These ideas are combined with the use of horizontal and vertical device structure designs, composition optimization, electrical control, and external factors to help understand resistive switching (RS) mechanisms. Measured temperature effects, pulse response, and carrier transport behaviors lead to compact models of RS mechanisms and energy band diagrams in order to aid the development of computer-aided design for ultralarge-v scale integration. This chapter presents a comprehensive investigation of SiOx-based RS characteristics and mechanisms for the post-CMOS device era.

2016 ◽  
Vol 1 (4) ◽  
Author(s):  
Yao-Feng Chang ◽  
Burt Fowler ◽  
Ying-Chen Chen ◽  
Fei Zhou ◽  
Chih-Hung Pan ◽  
...  

Abstract We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes to further minimize total synaptic power consumption due to sneak-path currents and demonstrate the capability for spike-induced synaptic behaviors, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation, long-term depression, and spike-timing dependent plasticity are demonstrated systemically with comprehensive investigation of spike waveform analyses and represent a potential application for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from the (SiH)2 defect to generate the hydrogenbridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with largescale complementary metal-oxide semiconductor manufacturing technology.


2020 ◽  
Vol 34 (28) ◽  
pp. 2050267
Author(s):  
Tian Kang ◽  
Xiaoyu Chen ◽  
Jia Zhu ◽  
Yun Huang ◽  
Zhuojie Chen ◽  
...  

Due to the outstanding performance of resistance random access memory (RRAM) in the memory field, the study of resistive switching (RS) phenomena has become extremely noticeable in the recent years. The mechanism of metal conductive filamentary RRAM is already clear, but the conditions of the RS are still unclear. Therefore, this paper aims to explore the conditions for the occurrence of resistive, using a new RS structure called Electrolyte-Oxide-Semiconductor (EOS). This structure is based on the formation of metal conductive filament and exhibits the unipolar switching characteristics. Due to the formation or rupture of the conductive filaments, this device exhibits different resistance states. A series model of electrolyte and conductive filaments is used to explain the IV curve of this device. Compared with the device using a metal active electrode, the active electrode of this device is originally ionized. Therefore, it would be a better tool to explore the mechanism of ion migration and the formation of conductive filaments. Materials screening of metal in RRAM would also be more efficient.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 551
Author(s):  
Zhongjian Bian ◽  
Xiaofeng Hong ◽  
Yanan Guo ◽  
Lirida Naviner ◽  
Wei Ge ◽  
...  

Spintronic based embedded magnetic random access memory (eMRAM) is becoming a foundry validated solution for the next-generation nonvolatile memory applications. The hybrid complementary metal-oxide-semiconductor (CMOS)/magnetic tunnel junction (MTJ) integration has been selected as a proper candidate for energy harvesting, area-constraint and energy-efficiency Internet of Things (IoT) systems-on-chips. Multi-VDD (low supply voltage) techniques were adopted to minimize energy dissipation in MRAM, at the cost of reduced writing/sensing speed and margin. Meanwhile, yield can be severely affected due to variations in process parameters. In this work, we conduct a thorough analysis of MRAM sensing margin and yield. We propose a current-mode sensing amplifier (CSA) named 1D high-sensing 1D margin, high 1D speed and 1D stability (HMSS-SA) with reconfigured reference path and pre-charge transistor. Process-voltage-temperature (PVT) aware analysis is performed based on an MTJ compact model and an industrial 28 nm CMOS technology, explicitly considering low-voltage (0.7 V), low tunneling magnetoresistance (TMR) (50%) and high temperature (85 °C) scenario as the worst sensing case. A case study takes a brief look at sensing circuits, which is applied to in-memory bit-wise computing. Simulation results indicate that the proposed high-sensing margin, high speed and stability sensing-sensing amplifier (HMSS-SA) achieves remarkable performance up to 2.5 GHz sensing frequency. At 0.65 V supply voltage, it can achieve 1 GHz operation frequency with only 0.3% failure rate.


2016 ◽  
Vol 06 (02) ◽  
pp. 1630003 ◽  
Author(s):  
Zhen Fan ◽  
Jingsheng Chen ◽  
John Wang

Ferroelectric random access memory (FeRAM) based on conventional ferroelectric perovskites, such as Pb(Zr,Ti)O3 and SrBi2Ta2O9, has encountered bottlenecks on memory density and cost, because those conventional perovskites suffer from various issues mainly including poor complementary metal-oxide-semiconductor (CMOS)-compatibility and limited scalability. Next-generation cost-efficient, high-density FeRAM shall therefore rely on a material revolution. Since the discovery of ferroelectricity in Si:HfO2 thin films in 2011, HfO2-based materials have aroused widespread interest in the field of FeRAM, because they are CMOS-compatible and can exhibit robust ferroelectricity even when the film thickness is scaled down to below 10 nm. A review on this new class of ferroelectric materials is therefore of great interest. In this paper, the most appealing topics about ferroelectric HfO2-based materials including origins of ferroelectricity, advantageous material properties, and current and potential applications in FeRAM, are briefly reviewed.


2007 ◽  
Vol 124-126 ◽  
pp. 603-606
Author(s):  
Sang Hee Won ◽  
Seung Hee Go ◽  
Jae Gab Lee

Simple process for the fabrication of Co/TiO2/Pt resistive random access memory, called ReRAM, has been developed by selective deposition of Co on micro-contact printed (μ-CP) self assembled monolayers (SAMs) patterns. Atomic Layer Deposition (ALD) was used to deposit TiO2 thin films, showing its ability of precise control over the thickness of TiO2, which is crucial to obtain proper resistive switching properties of TiO2 ReRAM. The fabrication process for Co/TiO2/Pt ReRAM involves the ALD of TiO2 on sputter-deposited Pt bottom electrode, followed by μ-CP with SAMs and then selective deposition of Co. This results in the Co/TiO2/Pt structure ReRAM. For comparison, Pt/TiO2/Pt ReRAM was produced and revealing the similar switching characteristics as that of Co/TiO2/Pt, thus indicating the feasibility of Co replacement with Pt top electrode. The ratios between the high-resistance state (Off state) and the low-resistance state (On state) were larger than 102. Consequently, the selective deposition of Co with μ-CP, newly developed in this study, can simplify the process and thus implemented into the fabrication of ReRAM.


2011 ◽  
Vol 1292 ◽  
Author(s):  
Jung Won Seo ◽  
Seung Jae Baik ◽  
Sang Jung Kang ◽  
Koeng Su Lim

ABSTRACTThis report covers the resistive switching characteristics of cross-bar type semi-transparent (or see-through) resistive random access memory (RRAM) devices based on ZnO. In order to evaluate the transmittance of the devices, we designed the memory array with various electrode sizes and spaces between the electrodes. To prevent read disturbance problems due to sneak currents, we employed a metal oxide based p-NiO/n-ZnO diode structure, which exhibited good rectifying characteristics and high forward current density. Based on these results, we found that the combined metal oxide diode/RRAM device could be promising candidate with suppressed read disturbances of cross-bar type ZnO RRAM device.


Sign in / Sign up

Export Citation Format

Share Document