STUDY OF SUBSTITUTION OF Zn FOR Cu IN YBa2Cu3O7 SYSTEM

2013 ◽  
Vol 22 ◽  
pp. 583-588
Author(s):  
P. K. SHARMA ◽  
A. SAMARIYA ◽  
M. S. DHAWAN ◽  
R. K. SINGHAL

The polycrystalline YBa2(Cu1-XZnX)3O7-δ samples (x=0.0 to 0.06) were synthesized and studied using X Ray diffraction, titration, resistivity, magnetization and X ray photoelectron spectroscopy (XPS). Results show that O2 stoichiometry (δ) changes on Zn substitution which affects their normal state resistivity as well as the TC. Zn also induces local magnetic moment as evidenced from magnetization results. A combination of change in O2 stoichiometry and magnetic pair breaking is found to be responsible for a rapid suppression of superconductivity.

1989 ◽  
Vol 03 (12) ◽  
pp. 939-944 ◽  
Author(s):  
YU MEI ◽  
S.M. GREEN ◽  
C. JIANG ◽  
H.L. LUO ◽  
C. POLITIS

Samples with compositions Bi 1.8 Pb 0.2 Sr 2( Ca 2−x Na x) Cu 3 O y, BiSr(Ca 1−x Cd x) Cu 2 O y and BiSr ( Ca 1−x Bi x) Cu 2 O y were prepared through solid state reaction. The X-ray diffraction results were analyzed and their resistivity behavior was studied. In general, all such substitution adversely affected their superconductive properties. All samples are of multiphase. The normal state resistivity behaves quite differently with the substitution of electropositive Na as compared with the replacement of electronegative Bi.


1995 ◽  
Vol 09 (10) ◽  
pp. 585-590 ◽  
Author(s):  
P. R. S. WARIAR ◽  
J. KOSHY ◽  
J. KURIAN ◽  
Y. P. YADAVA ◽  
A. D. DAMODARAN

Percolation behavior of normal state resistivity and superconductivity of SmBa 2 SbO 6– YBa 2 Cu 3 O 7−δ have been studied. The normal state and superconducting percolation threshold values of the composite are both found to be around 22% of YBa 2 Cu 3 O 7−δ in the system. The X-ray diffraction and resistivity measurements on the above percolation system have shown that there is no detectable reaction between SmBa 2 SbO 6 ceramic and YBa 2 Cu 3 O 7−δ superconductor even when the two substances are mixed thoroughly and sintered at 1020°C. The values of exponent 't' and 'u' describing the transport properties of the system are found to be 1.66 and 0.66 which agree with the theoretically expected value for a perfect composite system. The implications of the results are discussed.


2013 ◽  
Vol 665 ◽  
pp. 347-352
Author(s):  
A. Roy ◽  
T.A. Jamadar ◽  
Ajay Kumar Ghosh

We have synthesized Ru1Sr2Gd2-xCexCu2O10 (Ru-1222) materials using several concentrations of Ce. All ruthenocuprate compounds have been characterised by using standard X-ray diffraction (XRD) and Scanning Electron Micrographs (SEM). The concentration of Ce affects transport properties drastically. Compounds with x=0.5 remain nonsuperconducting with moderate resistivity even after annealing in different conditions. Enormous change in the normal state resistivity has been observed in different annealing conditions of Ru-1222 with x=0.5. Superconducting properties have been observed in compounds with x=0.65. The highest critical temperature obtained is 27.5K for x=0.65. In addition, the duration of annealing in flowing oxygen is found to be effective in changing the normal state resistivity for x=0.65.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 581
Author(s):  
Gajanan S. Ghodake ◽  
Surendra K. Shinde ◽  
Ganesh D. Saratale ◽  
Rijuta G. Saratale ◽  
Min Kim ◽  
...  

The utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer, and modification of extracted α-cellulose for application in enzyme immobilization can be extremely vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized (Fe3O4), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The developed material was characterized by high-resolution transmission electron microscopy (HR-TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses. Laccase immobilized on α-Cellulose-Fe3O4-CTNs (α-Cellulose-Fe3O4-CTNs-Laccase) gave significant activity recovery (99.16%) and laccase loading potential (169.36 mg/g). The α-Cellulose-Fe3O4-CTNs-Laccase displayed excellent stabilities for temperature, pH, and storage time. The α-Cellulose-Fe3O4-CTNs-Laccase applied in repeated cycles shown remarkable consistency of activity retention for 10 cycles. After the 10th cycle, α-Cellulose-Fe3O4-CTNs possessed 80.65% relative activity. Furthermore, α-Cellulose-Fe3O4-CTNs-Laccase shown excellent degradation of pharmaceutical contaminant sulfamethoxazole (SMX). The SMX degradation by α-Cellulose-Fe3O4-CTNs-Laccase was found optimum at incubation time (20 h), pH (3), temperatures (30 °C), and shaking conditions (200 rpm). Finally, α-Cellulose-Fe3O4-CTNs-Laccase gave repeated degradation of SMX. Thus, this study presents a novel, waste-derived, highly capable, and super-magnetic nanocomposite for enzyme immobilization applications.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 346
Author(s):  
Sonam Goyal ◽  
Maizatul Shima Shaharun ◽  
Ganaga Suriya Jayabal ◽  
Chong Fai Kait ◽  
Bawadi Abdullah ◽  
...  

A set of novel photocatalysts, i.e., copper-zirconia imidazolate (CuZrIm) frameworks, were synthesized using different zirconia molar ratios (i.e., 0.5, 1, and 1.5 mmol). The photoreduction process of CO2 to methanol in a continuous-flow stirred photoreactor at pressure and temperature of 1 atm and 25 °C, respectively, was studied. The physicochemical properties of the synthesized catalysts were studied using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. The highest methanol activity of 818.59 µmol/L.g was recorded when the CuZrIm1 catalyst with Cu/Zr/Im/NH4OH molar ratio of 2:1:4:2 (mmol/mmol/mmol/M) was employed. The enhanced yield is attributed to the presence of Cu2+ oxidation state and the uniformly dispersed active metals. The response surface methodology (RSM) was used to optimize the reaction parameters. The predicted results agreed well with the experimental ones with the correlation coefficient (R2) of 0.99. The optimization results showed that the highest methanol activity of 1054 µmol/L.g was recorded when the optimum parameters were employed, i.e., stirring rate (540 rpm), intensity of light (275 W/m2) and photocatalyst loading (1.3 g/L). The redox potential value for the CuZrIm1 shows that the reduction potential is −1.70 V and the oxidation potential is +1.28 V for the photoreduction of CO2 to methanol. The current work has established the potential utilization of the imidazolate framework as catalyst support for the photoreduction of CO2 to methanol.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 937
Author(s):  
Yingying Hu ◽  
Md Rasadujjaman ◽  
Yanrong Wang ◽  
Jing Zhang ◽  
Jiang Yan ◽  
...  

By reactive DC magnetron sputtering from a pure Ta target onto silicon substrates, Ta(N) films were prepared with different N2 flow rates of 0, 12, 17, 25, 38, and 58 sccm. The effects of N2 flow rate on the electrical properties, crystal structure, elemental composition, and optical properties of Ta(N) were studied. These properties were characterized by the four-probe method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry (SE). Results show that the deposition rate decreases with an increase of N2 flows. Furthermore, as resistivity increases, the crystal size decreases, the crystal structure transitions from β-Ta to TaN(111), and finally becomes the N-rich phase Ta3N5(130, 040). Studying the optical properties, it is found that there are differences in the refractive index (n) and extinction coefficient (k) of Ta(N) with different thicknesses and different N2 flow rates, depending on the crystal size and crystal phase structure.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Valentina Krylova ◽  
Mindaugas Andrulevičius

Copper sulfide layers were formed on polyamide PA 6 surface using the sorption-diffusion method. Polymer samples were immersed for 4 and 5 h in 0.15 mol⋅  solutions and acidified with HCl (0.1 mol⋅) at . After washing and drying, the samples were treated with Cu(I) salt solution. The samples were studied by UV/VIS, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods. All methods confirmed that on the surface of the polyamide film a layer of copper sulfide was formed. The copper sulfide layers are indirect band-gap semiconductors. The values of are 1.25 and 1.3 eV for 4 h and 5 h sulfured PA 6 respectively. Copper XPS spectra analyses showed Cu(I) bonds only in deeper layers of the formed film, while in sulfur XPS S 2p spectra dominating sulfide bonds were found after cleaning the surface with ions. It has been established by the XRD method that, beside , the layer contains as well. For PA 6 initially sulfured 4 h, grain size forchalcocite, , was  nm and fordjurleite, , it was 54.17 nm. The sheet resistance of the obtained layer varies from 6300 to 102 .


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 48
Author(s):  
Pawel Mierczynski ◽  
Magdalena Mosińska ◽  
Lukasz Szkudlarek ◽  
Karolina Chalupka ◽  
Misa Tatsuzawa ◽  
...  

Biodiesel production from rapeseed oil and methanol via transesterification reaction facilitated by various monometallic catalyst supported on natural zeolite (NZ) was investigated. The physicochemical characteristics of the synthesized catalysts were studied by X-ray diffraction (XRD), Brunauer–Emmett–Teller method (BET), temperature-programmed-reduction in hydrogen (H2-TPR), temperature-programmed-desorption of ammonia (NH3-TPD), Scanning Electron Microscope equipped with EDX detector (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) methods. The highest activity and methyl ester yields were obtained for the Pt/NZ catalyst. This catalyst showed the highest triglycerides conversion of 98.9% and fatty acids methyl esters yields of 94.6%. The activity results also confirmed the high activity of the carrier material (NZ) itself in the investigated reaction. Support material exhibited 90.5% of TG conversion and the Fatty Acid Methyl Esters yield (FAME) of 67.2%. Introduction of noble metals improves the TG conversion and FAME yield values. Increasing of the metal loading from 0.5 to 2 wt.% improves the reactivity properties of the investigated catalysts.


Author(s):  
Mariola Kądziołka-Gaweł ◽  
Maria Czaja ◽  
Mateusz Dulski ◽  
Tomasz Krzykawski ◽  
Magdalena Szubka

AbstractMössbauer, Raman, X-ray diffraction and X-ray photoelectron spectroscopies were used to examine the effects of temperature on the structure of two aluminoceladonite samples. The process of oxidation of Fe2+ to Fe3+ ions started at about 350 °C for the sample richer in Al and at 300 °C for the sample somewhat lower Al-content. Mössbauer results show that this process may be associated with dehydroxylation or even initiate it. The first stage of dehydroxylation takes place at a temperature > 350 °C when the adjacent OH groups are replaced with a single residual oxygen atom. Up to ~500 °C, Fe ions do not migrate from cis-octahedra to trans-octahedra sites, but the coordination number of polyhedra changes from six to five. This temperature can be treated as the second stage of dehydroxylation. The temperature dependence on the integral intensity ratio between bands centered at ~590 and 705 cm−1 (I590/I705) clearly reflects the temperature at which six-coordinated polyhedra are transformed into five-coordinated polyhedra. X-ray photoelectron spectra obtained in the region of the Si2p, Al2p, Fe2p, K2p and O1s core levels, highlighted a route to identify the position of Si, Al, K and Fe cations in a structure of layered silicates with temperature. All the measurements show that the sample with a higher aluminum content and a lower iron content in octahedral sites starts to undergo a structural reorganization at a relatively higher temperature than the less aluminum-rich sample does. This suggests that iron may perform an important role in the initiation of the dehydroxylation of aluminoceladonites.


Sign in / Sign up

Export Citation Format

Share Document