FTMP-BASED MODELING AND SIMULATION OF MAGNESIUM

Author(s):  
NAOKI KAJIWARA ◽  
KAZUHIRO IMIYA ◽  
TADASHI HASEBE

The present study proposes a constitutive model for deformation twinning which takes into account the twin degrees of freedom via incompatibility tensor model based on Field Theory of Multiscale Plasticity (FTMP). The model is introduced in the hardening law in the FTMP-based crystalline plasticity framework, which is further implemented into a finite element code. Deformation analyses are made for pure single crystal magnesium with HCP structure, and the descriptive capabilities of the proposed model are confirmed based on critical comparisons with experimental data under plain–strain compression in multiple orientations, available in the literature. The simulated results are demonstrated to successfully reproduce the unique stress–strain responses induced by twinning. The evolution of the relative activities of the various slips, and twin mechanisms for each orientation are extensively examined.

Author(s):  
TATSUYA OKUDA ◽  
KAZUHIRO IMIYA ◽  
TADASHI HASEBE

The deformation twinning model based on Field Theory of Multiscale Plasticity (FTMP) represents the twin degrees of freedom with the incompatibility tensor, which is incorporated into the hardening law of the FTMP-based crystalline plasticity framework. The model is further implemented into a finite element code. In the present study, the model is adapted to a single slip-oriented FCC single crystal sample, and preliminary simulations are conducted under static conditions to confirm the model's basic capabilities. The simulation results exhibit nucleation and growth of twinned regions, accompanied by serrated stress response and overall softening. Simulations under hypervelocity impact conditions are also conducted to investigate the model's descriptive capabilities of induced complex substructures composing of both twins and dislocations. The simulated nucleation of twins is examined in detail by using duality diagrams in terms of the flow-evolutionary hypothesis.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
R. Fargère ◽  
P. Velex

A global model of mechanical transmissions is introduced which deals with most of the possible interactions between gears, shafts, and hydrodynamic journal bearings. A specific element for wide-faced gears with nonlinear time-varying mesh stiffness and tooth shape deviations is combined with shaft finite elements, whereas the bearing contributions are introduced based on the direct solution of Reynolds' equation. Because of the large bearing clearances, particular attention has been paid to the definition of the degrees-of-freedom and their datum. Solutions are derived by combining a time step integration scheme, a Newton–Raphson method, and a normal contact algorithm in such a way that the contact conditions in the bearings and on the gear teeth are simultaneously dealt with. A series of comparisons with the experimental results obtained on a test rig are given which prove that the proposed model is sound. Finally, a number of results are presented which show that parameters often discarded in global models such as the location of the oil inlet area, the oil temperature in the bearings, the clearance/elastic couplings interactions, etc. can be influential on static and dynamic tooth loading.


2021 ◽  
Vol 8 (4) ◽  
pp. 691-704
Author(s):  
M. Janane Allah ◽  
◽  
Y. Belaasilia ◽  
A. Timesli ◽  
A. El Haouzi ◽  
...  

In this work, an implicit algorithm is used for analyzing the free dynamic behavior of Functionally Graded Material (FGM) plates. The Third order Shear Deformation Theory (TSDT) is used to develop the proposed model. In this contribution, the formulation is written without any homogenization technique as the rule of mixture. The Hamilton principle is used to establish the resulting equations of motion. For spatial discretization based on Finite Element Method (FEM), a quadratic element with four and eight nodes is adopted using seven degrees of freedom per node. An implicit algorithm is used for solving the obtained problem. To study the accuracy and the performance of the proposed approach, we present comparisons with literature and laminate composite modeling results for vibration natural frequencies. Otherwise, we examine the influence of the exponent of the volume fraction which reacts the plates "P-FGM" and "S-FGM". In addition, we study the influence of the thickness on "E-FGM" plates.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Shengye Lin ◽  
Shuyun Jiang

This paper studies the stiffness characteristics of preloaded duplex angular contact ball bearings. First, a five degrees-of-freedom (5DOF) quasi-static model of the preloaded duplex angular contact ball bearing is established based on the Jones bearing model. Three bearing configurations (face-to-face, back-to-back, and tandem arrangements) and two preload mechanisms (constant pressure preload and fixed position preload) are included in the proposed model. Subsequently, the five-dimensional stiffness matrix of the preloaded duplex angular contact ball bearing is derived analytically. Then, an experimental setup is developed to measure the radial stiffness and the angular stiffness of duplex angular contact ball bearings. The simulated results match well with those from experiments, which prove the validity of the proposed model. Finally, the effects of bearing configuration, preload mechanism, and unloaded contact angle on the angular stiffness and the cross-coupling are studied systematically.


2011 ◽  
Vol 82 ◽  
pp. 722-727 ◽  
Author(s):  
Kristian Schellenberg ◽  
Norimitsu Kishi ◽  
Hisashi Kon-No

A system of multiple degrees of freedom composed out of three masses and three springs has been presented in 2008 for analyzing rockfall impacts on protective structures covered by a cushion layer. The model has then been used for a blind prediction of a large-scale test carried out in Sapporo, Japan, in November 2009. The test results showed substantial deviations from the blind predictions, which led to a deeper evaluation of the model input parameters showing a significant influence of the modeling properties for the cushion layer on the overall results. The cushion properties include also assumptions for the loading geometry and the definition of the parameters can be challenging. This paper introduces the test setup and the selected parameters in the proposed model for the blind prediction. After comparison with the test results, adjustments in the input parameters in order to match the test results have been evaluated. Conclusions for the application of the model as well as for further model improvements are drawn.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Zhixin Zhao ◽  
Wenhua Wang ◽  
Dongdong Han ◽  
Wei Shi ◽  
Yulin Si ◽  
...  

Abstract A braceless semi-submersible floating platform is proposed for a Technical University of Denmark (DTU) 10-MW wind turbine at moderate water depths with reference to an existing National Renewable Energy Laboratory (NREL) 5-MW braceless semi-submersible floating platform, and a servo control system for a 10-MW semi-submersible floating offshore wind turbine (FOWT) is introduced. To control the ultimate and fatigue loads of the FOWT, a fore-aft tuned mass damper (TMD) installed in the nacelle of the 10-MW semi-submersible FOWT was investigated for vibration alleviation and load reduction. Considering the hydrodynamic and mooring effect, a four degrees-of-freedom (DOFs) (platform surge and pitch motions, tower fore-aft bending, and TMD translation) simplified dynamic model for the 10-MW semi-submersible FOWT is established based on D’Alembert’s principle. Then, the parameter estimation is conducted based on the Levenberg–Marquardt (LM) algorithm, and the simplified dynamic model was further verified by comparing the output responses with FAST and the proposed model. Furthermore, the exhaustive search (ES) and genetic algorithm (GA) are embedded into the simplified dynamic model to optimize the TMD parameters. Finally, a fully coupled time-domain simulation for all the selected environmental conditions is conducted in FAST, and the vibration suppression performance of the optimized TMD design for the 10-W semi-submersible FOWT was further examined and analyzed.


Actuators ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 32 ◽  
Author(s):  
Shuhei Kawamura ◽  
Mizuki Sudani ◽  
Mingcong Deng ◽  
Yuichi Noge ◽  
Shuichi Wakimoto

Recently, soft actuators have been getting increased attention within various fields. The actuators are composed of flexible materials and driven by pneumatic pressure. A thin pneumatic rubber actuator generating 3 degrees of freedom motion, called 3-DOF micro-hand, has small diameter McKibben artificial muscles which generate a contraction force in the axial direction. By this structure, the micro-hand contracts in the longitudinal direction and bends in any direction by changing the applied air pressure pattern to the artificial muscles. The input–output relation of the micro-hand, however, is complicated and has not been modeled. In this paper, modeling for 3-DOF micro-hand is proposed. Moreover, the experimental system is built for the micro-hand and the proposed model is evaluated by using the experimental results.


Author(s):  
Yung-Chang Cheng

A non-linear creep model that considers non-constant creep coefficients that vary as a function of vehicle speed is derived using Hertz contact theory, Kalker’s linear theory and a heuristic non-linear creep model. The proposed model is created by modifying the heuristic non-linear creep model by adding a linear creep moment and the semi-axis lengths in the non-linearity of the saturation constant. In this paper, the vehicle is modeled by a system with 28 degrees of freedom, taking into consideration the lateral displacement, vertical displacement, roll angle and yaw angle of each wheelset, the truck frames and car body. To analyze the respective effects of the major system parameters on the vehicle dynamics, the 28 degree-of-freedom (DOF) system is reduced to a 25-DOF model, by excluding designated subsets of the system parameters. The accuracy of the present analysis is verified by comparing a six-DOF system and the current numerical results with results in the literature. The effects of suspension parameters of a vehicle on the critical hunting speeds evaluated by the currently proposed model, the traditional non-linear creep model and the linear creep model are illustrated. In most cases, the obtained results show that the critical hunting speed evaluated using the new non-linear creep model is greater than that derived using the traditional non-linear creep model. Additionally, the critical hunting speed evaluated using the linear creep model is higher than that evaluated using the currently proposed non-linear creep model.


Author(s):  
Jussi T. Sopanen ◽  
Aki M. Mikkola

This study proposes the dynamic model of a deep groove ball bearing with six degrees of freedom. The model includes descriptions of non-linear Hertzian contact deformation and elastohydrodynamic fluid film. The geometry, material properties and diametral clearance of the bearing are given as the input to the proposed model. The bearing force and torque components are calculated from the relative displacements and velocities between bearing rings. Distributed defects such as the waviness of the inner and outer ring, and localized defects, such as inner and outer ring defects, are taken into consideration in the proposed model. The effect of the diametral clearance of the bearing on the natural frequencies and vibration response of the rotor bearing system is studied. The diametral clearance is found to have a significant effect on the level of vibration as well as on the natural frequencies. Low-order waviness, also known as out-of-roundness, is found to generate vibration at frequencies of the waviness order multiplied by the rotation speed. Localized defects in the inner and outer ring are found to generate vibrations at bearing defect frequencies. The simulation results are in line with the analytical and experimental results available in literature. The proposed ball bearing model could be used in the general multibody or rotor dynamics computer code as an interference element between the rotor and the housing.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Hoai Nam Huynh ◽  
Yusuf Altintas

Abstract A systematic modeling of multibody dynamics of five-axis machine tools is presented in this article. The machine is divided into major subassemblies such as spindle, column, bed, tool changer, and longitudinal and rotary drives. The inertias and mass center of each subassembly are calculated from the design model. The subassemblies are connected with elastic springs and damping elements at contact joints to form the complete multibody dynamic model of the machine that considers the rigid body kinematics and structural vibrations of the machine at any point. The unknown elastic joint parameters are estimated from the experimental modal analysis of the machine tool. The resulting position-dependent multibody dynamic model has the minimal number of degrees-of-freedom that is equivalent to the number of measured modes, as opposed to thousands used in finite element models. The frequency response functions of the machine can be predicted at any posture of the five-axis machine, which are compared against the directly measured values to assess the validity of model. The proposed model can predict the combined rigid body motion and vibrations of the machine with computational efficiency, and hence, it can be used as a digital twin to simulate its dynamic performance in machining operations and tracking control tests of the servo drives.


Sign in / Sign up

Export Citation Format

Share Document