Fabrication of a-Si:H Thin Film Transistors on 4-inch Glass Substrates by a Large Area Ion Doping Technique

1991 ◽  
Vol 30 (Part 2, No. 1A) ◽  
pp. L67-L69 ◽  
Author(s):  
Akihisa Yoshida ◽  
Masaaki Nukayama ◽  
Yasunori Andoh ◽  
Masatoshi Kitagawa ◽  
Takashi Hirao
2018 ◽  
Vol 5 (2) ◽  
pp. 16-18
Author(s):  
Chandar Shekar B ◽  
Ranjit Kumar R ◽  
Dinesh K.P.B ◽  
Sulana Sundar C ◽  
Sunnitha S ◽  
...  

Thin films of poly vinyl alcohol (PVA) were prepared on pre-cleaned glass substrates by Dip Coating Method. FTIR spectrum was used to identify the functional groups present in the prepared films. The vibrational peaks observed at 1260 cm-1 and 851 cm-1 are assigned to C–C stretching and CH rocking of PVA.The characteristic band appearing at 1432 cm-1 is assigned to C–H bend of CH2 of PVA. The thickness of the prepared thin films were measured by using an electronic thickness measuring instrument (Tesatronic-TTD20) and cross checked by gravimetric method. XRD spectra indicated the amorphous nature of the films.Surface morphology of the coated films was studied by scanning electron microscope (SEM). The surface revealed no pits and pin holes on the surface. The observed surface morphology indicated that these films could be used as dielectric layer in organic thin film transistors and as drug delivery system for wound healing.


2007 ◽  
Vol 28 (1) ◽  
pp. 42-44 ◽  
Author(s):  
Hyunsuk Kim ◽  
Dong-Won Kim ◽  
Kyoungah Cho ◽  
Sangsig Kim

2016 ◽  
Vol 16 (4) ◽  
pp. 3659-3663
Author(s):  
H Yu ◽  
L Zhang ◽  
X. H Li ◽  
H. Y Xu ◽  
Y. C Liu

The amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) were demonstrated based on a double-layer channel structure, where the channel is composed of an ultrathin nitrogenated a-IGZO (a-IGZO:N) layer and an undoped a-IGZO layer. The double-layer channel device showed higher saturation mobility and lower threshold-voltage shift (5.74 cm2/Vs, 2.6 V) compared to its single-layer counterpart (0.17 cm2/Vs, 7.23 V). The improvement can be attributed to three aspects: (1) improved carrier transport properties of the channel by the a-IGZO:N layer with high carrier mobility and the a-IGZO layer with high carrier concentration, (2) reduced interfacial trap density between the active channel and the gate insulator, and (3) higher surface flatness of the double-layer channel. Our study reveals key insights into double-layer channel, involving selecting more suitable electrical property for back-channel layer and more suitable interface modification for active layer. Meanwhile, room temperature fabrication amorphous TFTs offer certain advantages on better flexibility and higher uniformity over a large area.


2001 ◽  
Vol 15 (17n19) ◽  
pp. 667-670 ◽  
Author(s):  
Y. RODRÍGUEZ-LAZCANO ◽  
M. T. S. NAIR ◽  
P. K. NAIR

The possibility of generating ternary compounds through annealing thin film stacks of binary composition has been demonstrated before. In this work we report a method to produce large area coating of ternary compounds through a reaction in solid state between thin films of Sb2S3 and CuS. Thin films of Sb2S3 -CuS were deposited on glass substrates in the sequence of Sb2S3 followed by CuS (on Sb2S3 ) using chemical bath deposition method. The multilayer stack, thus produced, of approximately 0.5 μm in thickness, where annealed under nitrogen and argon atmospheres at different temperatures to produce films of ternary composition, CuxSbySz . An optical band gap of ~1.5 eV was observed in these films, suggesting that the thin films of ternary composition formed in this way are suitable for use as absorber materials in photovoltaic devices. The results on the analyses of structural, electrical and optical properties of films formed with different combinations of thickness in the multilayers will be discussed in the paper.


1994 ◽  
Vol 345 ◽  
Author(s):  
Nobuki Ibaraki

AbstractA technical trend for a-Si TFTs is their application to large-size, high-pixel density AMLCDs such as XGA, EWS, and HDTV. In order to realize these LCDs, the TFT device characteristics must be improved. Future technologies, which will be necessary to fabricate TFTs with improved characteristics are as follows,(1) Fully self-aligned TFT technology: A SA-TFT structure reduces the feedthrough voltage caused by parasitic capacitance due to gate/source overlap. This results in an improved picture quality and a higher aperture ratio. Fabrication of such a structure would require ion doping technology.(2) Ion doping technology: This non-mass-separated implantation technique has large area doping capability and much higher doping speed compared to conventional ion implantation technique. The major problems with the ion doping technique is the implantation of unwanted species which deteriorate the quality of source/drain and channel regions of TFTs.


Nano Research ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 4356-4367 ◽  
Author(s):  
Guodong Dong ◽  
Jie Zhao ◽  
Lijun Shen ◽  
Jiye Xia ◽  
Hu Meng ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kyohei Nakamura ◽  
Atsushi Kobayashi ◽  
Kohei Ueno ◽  
Jitsuo Ohta ◽  
Hiroshi Fujioka

Sign in / Sign up

Export Citation Format

Share Document