Reduction of Threading Dislocations in InGaN/GaN Double Heterostructure through the Introduction of Low-Temperature GaN Intermediate Layer

2002 ◽  
Vol 41 (Part 1, No. 3A) ◽  
pp. 1253-1258 ◽  
Author(s):  
Doo-Hyeb Yoon ◽  
Kyu-Seok Lee ◽  
Ji-Beom Yoo ◽  
Tae-Yeon Seong
Author(s):  
J. Wei ◽  
S. S. Deng ◽  
C. M. Tan

Silicon-to-silicon wafer bonding by sol-gel intermediate layer has been performed using acid-catalyzed tetraethylthosilicate-ethanol-water sol solution. High bond strength near to the fracture strength of bulk silicon is obtained at low temperature, for example 100°C. However, The bond efficiency and bond strength of this intermediate layer bonding sharply decrease when the bonding temperature increases to elevated temperature, such as 300 °C. The degradation of bond quality is found to be related to the decomposition of residual organic species at elevated bonding temperature. The bubble generation and the mechanism of the high bond strength at low temperature are exploited.


2003 ◽  
Vol 765 ◽  
Author(s):  
M.M. Rahman ◽  
T. Tambo ◽  
C. Tatsuyama

AbstractIn the present experiment, we have grown 2500-Å thick Si0.75Ge0.25 alloy layers on Si(001) substrate by MBE process using a short-period (Si14/Si0.75Ge0.25)20 superlattice (SL) as buffer layers. In the SL layers, first a layer of 14 monolayers (MLs) of Si (thickness about 20Å) then a thin layer of Si0.75Ge0.25 (thickness 5-6Å) were grown. This Si/(Si0.75Ge0.25) bilayers were repeated for 20 times. The buffer layers were grown at different temperatures from 300-400°C and the alloy layers were then grown at 500°C on the buffer layers. The alloy layer showed low residual strain (about -0.16%) and smooth surface (rms roughness ~15Å) with 300°C grown SL buffer. Low temperature growth of Si in SL layer introduces point defects and low temperature growth of Si1-xGex in SL layer reduces the Ge segregation length, which leads to strained SL layer formation. Strained layers are capable to make barrier for the propagation of threading dislocations and point defect sites can trap the dislocations.


2009 ◽  
Vol 31 (9) ◽  
pp. 1323-1326 ◽  
Author(s):  
Yoshikazu Terai ◽  
Takehiro Tokuno ◽  
Hideki Ichida ◽  
Yasuo Kanematsu ◽  
Yasufumi Fujiwara

2008 ◽  
Author(s):  
Riko I Made ◽  
Chee Lip Gan ◽  
Chengkuo Lee ◽  
Li Ling Yan ◽  
Aibin Yu ◽  
...  

2014 ◽  
Vol 778-780 ◽  
pp. 251-254 ◽  
Author(s):  
Kazuki Meguro ◽  
Tsugutada Narita ◽  
Kaon Noto ◽  
Hideki Nakazawa

We have formed a SiC interfacial buffer layer on AlN/Si substrates at a low temperature by low-pressure chemical vapor deposition (LPCVD) using monomethylsilane (CH3SiH3; MMS), and grew 3C-SiC films on the low-temperature buffer layer by LPCVD using MMS. We investigated the surface morphology and crystallinity of the grown SiC films. It was found that the formation of the SiC buffer layer suppressed the outdiffusion of Al and N atoms from the AlN intermediate layer to the SiC films and further improved the surface morphology and crystallinity of the films.


Sign in / Sign up

Export Citation Format

Share Document