About this title - Application of Analytical Techniques to Petroleum Systems

10.1144/sp484 ◽  
2020 ◽  
Vol 484 (1) ◽  
pp. NP-NP
Author(s):  
Patrick J. Dowey ◽  
Mark Osborne ◽  
Herbert Volk

Cutting-edge techniques have always been utilized in petroleum exploration and production to reduce costs and improve efficiencies. The demand for petroleum in the form of oil and gas is expected to increase for electricity production, transport and chemical production, largely driven by an increase in energy consumption in the developing world. Innovations in analytical methods will continue to play a key role in the industry moving forwards as society shifts towards lower carbon energy systems and more advantaged oil and gas resources are targeted. This volume brings together new analytical approaches and describes how they can be applied to the study of petroleum systems. The papers within this volume cover a wide range of topics and case studies, in the fields of fluid and isotope geochemistry, organic geochemistry, imaging and sediment provenance. The work illustrates how the current, state-of-the-art technology can be effectively utilised to address ongoing challenges in petroleum geoscience.


2020 ◽  
Vol 484 (1) ◽  
pp. 1-7
Author(s):  
Patrick J. Dowey ◽  
Mark Osborne ◽  
Herbert Volk

AbstractCutting-edge techniques have always been utilized in petroleum exploration and production to reduce costs and improve efficiencies. Innovations in analytical methods will continue to play a key role in the industry moving forwards, as society shifts towards lower carbon energy systems. This volume brings together new analytical approaches and describes how they can be applied to the study of petroleum systems. The papers within this volume cover a wide range of topics and case studies, in the fields of fluid and isotope geochemistry, organic geochemistry, imaging and sediment provenance. The work illustrates how the current, state-of-the-art technology can be effectively utilized to address ongoing challenges in petroleum geoscience.



2000 ◽  
Vol 40 (1) ◽  
pp. 26
Author(s):  
M.R. Bendall C.F. Burrett ◽  
H.J. Askin

Sedimentary successions belonging to three petroleum su persy stems can be recognised in and below the Late Carboniferous to Late Triassic onshore Tasmania Basin. These are the Centralian, Larapintine and Gondwanan. The oldest (Centralian) is poorly known and contains possible mature source rocks in Upper Proterozoic dolomites. The Larapintine 2 system is represented by rocks of the Devonian fold and thrust belt beneath the Tasmania Basin. Potential source rocks are micrites and shales within the 1.8 km-thick tropical Ordovician Gordon Group carbonates. Conodont CAI plots show that the Gordon Group lies in the oil and gas windows over most of central Tasmania and probably under much of the Tasmania Basin. Potential reservoirs are the upper reefal parts of the Gordon Group, paleokarsted surfaces within the Gordon Group and the overlying sandstones of the Siluro-Devonian Tiger Range and Eldon Groups. Seal rocks include shales within the Siluro-Devonian and Upper Carboniferous-Permian tillites and shales.The Gondwanan supersystem is the most promising supersystem for petroleum exploration within the onshore Tasmania Basin. It is divided into two petroleum systems— the Early Permian Gondwanan 1 system, and the Late Permian to Triassic Gondwanan 2 system. Excellent source rocks occur in the marine Tasmanite Oil Shale and other sections within the Lower Permian Woody Island and Quamby Formations of the Gondwanan 1 system and within coals and freshwater oil shales of the Gondwanan 2 system. These sources are within the oil and gas windows across most of the basin and probably reached peak oil generation at about 100 Ma. An oil seep, sourced from a Tasmanites-rich, anoxic shale, is found within Jurassic dolerite 40 km WSW of Hobart. Potential Gondwanan 1 reservoirs are the glaciofluvial Faulkner Group sandstones and sandstones and limestones within the overlying parts of the glaciomarine Permian sequence. The Upper Permian Ferntree Mudstone Formation provides an effective regional seal. Potential Gondwanan 2 reservoirs are the sandstones of the Upper Permian to Norian Upper Parmeener Supergroup. Traps consisting of domes, anticlines and faults were formed probably during the Early Cretaceous. Preliminary interpretation of a short AGSO seismic profile in the Tasmania Basin shows that, contrary to earlier belief, structures can be mapped beneath extensive and thick (300 m) sills of Jurassic dolerite. In addition, the total section of Gondwana to Upper Proterozoic to Triassic sediments appears to be in excess of 8,500 m. These recent studies, analysis of the oil seep and drilling results show that the Tasmanian source rocks have generated both oil and gas. The Tasmania Basin is considered prospective for both petroleum and helium and is comparable in size and stratigraphy to other glaciomarine-terrestrial Gondwanan basins such as the South Oman and Cooper Basins.



2009 ◽  
Vol 49 (1) ◽  
pp. 463
Author(s):  
John Hartwell

John Hartwell is Head of the Resources Division in the Department of Resources, Energy and Tourism, Canberra Australia. The Resources Division provides advice to the Australian Government on policy issues, legislative changes and administrative matters related to the petroleum industry, upstream and downstream and the coal and minerals industries. In addition to his divisional responsibilities, he is the Australian Commissioner for the Australia/East Timor Joint Petroleum Development Area and Chairman of the National Oil and Gas Safety Advisory Committee. He also chairs two of the taskforces, Clean Fossil Energy and Aluminium, under the Asia Pacific Partnership for Clean Development and Climate (AP6). He serves on two industry and government leadership groups delivering reports to the Australian Government, strategies for the oil and gas industry and framework for the uranium industry. More recently he led a team charged with responsibility for taking forward the Australian Government’s proposal to establish a global carbon capture and storage institute. He is involved in the implementation of a range of resource related initiatives under the Government’s Industry Action Agenda process, including mining and technology services, minerals exploration and light metals. Previously he served as Deputy Chairman of the Snowy Mountains Council and the Commonwealth representative to the Natural Gas Pipelines Advisory Committee. He has occupied a wide range of positions in the Australian Government dealing with trade, commodity, and energy and resource issues. He has worked in Treasury, the Department of Trade, Department of Foreign Affairs and Trade and the Department of Primary Industries and Energy before the Department of Industry, Science and Resources. From 1992–96 he was a Minister Counsellor in the Australian Embassy, Washington, with responsibility for agriculture and resource issues and also served in the Australian High Commission, London (1981–84) as the Counsellor/senior trade relations officer. He holds a MComm in economics, and Honours in economics from the University of New South Wales, Australia. Prior to joining the Australian Government, worked as a bank economist. He was awarded a public service medal in 2005 for his work on resources issues for the Australian Government.



2018 ◽  
Vol 484 (1) ◽  
pp. 121-137 ◽  
Author(s):  
Clifford C. Walters

AbstractPetroleum geochemistry has historically relied on the analysis of field samples – source rocks, oils and gases. Data collected for individual samples are considered characteristic of a specific geographical location and geological position that, when aggregated with data from other samples, can be extrapolated to larger scales. These scale-ups may be as small as a few metres, such as a detailed characterization of source rocks penetrated by a single well, to global, such as petroleum systems that now span continents due to plate tectonics. However, a single sample contains a wealth of information at smaller scales. In situ analytical techniques have improved significantly over the last decade, allowing us to examine sedimentary rocks at ever higher spatial (areal and temporal) resolution. Mass spectrometric imaging is an emerging, enabling technology that can be performed at c. 200 µm (matrix-assisted laser desorption) to 50 nm (nanoSIMS) resolution. X-ray microcomputed tomography (µ-CT) is being applied to examine the storage and transport of petroleum in low-permeability shales and carbonates at spatial resolutions as low as c. 8 µm. Pore architecture in shale, both organic and inorganic, can be modelled from small-angle neutron scattering (SANS) data and imaged directly with helium ion microscopy at c. 1 nm resolution. Atomic force microscopy (AFM) can now resolve the molecular structure of individual asphaltene molecules. Information obtained with these techniques is now revealing the fundamental nature of geological organic materials, opening the span of petroleum geochemistry from atoms to continents.



2001 ◽  
Vol 41 (1) ◽  
pp. 37 ◽  
Author(s):  
J.A. Dickinson ◽  
M.W. Wallace ◽  
G.R. Holdgate ◽  
J. Daniels ◽  
S.J. Gallagher ◽  
...  

The influence of Neogene tectonics in the SE Australian basins has generally been underestimated in the petroleum exploration literature. However, onshore stratigraphic and offshore seismic data indicates that significant deformation and exhumation (up to one km or more) has occurred during the late Tertiary-Quaternary. This tectonism coincides with a change in the dynamics of the Australian plate, beginning at around 12 Ma, resulting in a WNW–ESE compressional regime which has continued to the present day.Significant late Miocene tectonism is indicated by a regional angular unconformity at around the Mio-Pliocene boundary in the onshore and nearshore successions of the SE Australian basins.Evidence of on going Pliocene- Quaternary tectonism is widespread in all of the SE Australian basins. Late Tertiary tectonism has produced structures in the offshore SE Australian basins which have been favourable targets for petroleum accumulation (e.g. Nerita structure, Torquay Sub-basin; Cormorant structure, Bass Basin). In the offshore Gippsland Basin, most of the oil- and gas-bearing structures have grown during Oligocene-Recent time. Some Gippsland Basin structures were largely produced prior to the mid- Miocene, while others have a younger structural history. In areas of intense late Tertiary exhumation and uplift (e.g. proximal to the Otway and Strzelecki Ranges), burial/maturation models of petroleum generation may be significantly affected by Neogene uplift.Many structures produced by late Miocene-Pliocene deformation are dry. These relatively young structures may post-date the major maturation episodes, with the post-structure history of the basins dominated by exhumation and cooling.



2014 ◽  
Vol 54 (1) ◽  
pp. 383
Author(s):  
Thomas Bernecker ◽  
Dianne Edwards ◽  
Tehani Kuske ◽  
Bridgette Lewis ◽  
Tegan Smith

The Australian Government formally releases new offshore exploration areas at the annual APPEA conference. Industry nominations provided guidance for the selection of gazettal areas, and in 2014 all 30 areas are supported by such nominations. The release areas are located across various offshore hydrocarbon provinces ranging from mature basins with ongoing oil and gas production to exploration frontiers. Work program bids are invited for two rounds closing on 2 October 2014 and 2 April 2015, while the closing date for four cash bid areas is 5 February 2015. Twenty-nine of the 2014 Release Areas are located along Australia’s northern margin within the Westralian Superbasin, which encompasses the rift-basins that extend from the Northern Carnarvon Basin to the Bonaparte Basin. Evolution during Gondwana break-up established a series of petroleum systems, many of which have been successfully explored, while others remain untapped. Only one area was nominated and approved for release on Australia’s southern margin. The 220 graticular blocks cover almost the entire Eyre Sub-basin of the Bight Basin. In the context of the recent commencement of large-scale exploration programs in the Ceduna and Duntroon sub-basins, this release area provides additional opportunities to explore an offshore frontier. Geoscience Australia’s new long-term petroleum program supports industry activities by engaging in petroleum geological studies that are aimed at the establishment of margin to basin-scale structural frameworks and comprehensive assessments of Australian source rocks underpinning all hydrocarbon prospectivity studies.



2016 ◽  
Vol 56 (2) ◽  
pp. 580 ◽  
Author(s):  
Alison Troup ◽  
Sally Edwards

Historically, petroleum exploration in Queensland has focused on the Bowen-Surat and Cooper-Eromanga basins, with only cursory examination of other basins across the state. As part of the Queensland Industry Priorities Initiative, two projects (Round 1 and 2) were submitted to the Geological Survey of Queensland (GSQ) to examine the geochemical characteristics of potential petroleum source rocks throughout Queensland. The analysis conducted provides a better understanding of generative potential for petroleum, and predicts the timing, volume, composition, and physical state of hydrocarbons retained in and expelled from source rocks. It is an integral component to petroleum systems analysis used to identify the potential for undiscovered accumulations of petroleum from conventional and unconventional reservoirs. Of particular interest were the Georgina, Drummond, Eromanga, and Maryborough basins. Of these, the Georgina and Maryborough basins have known hydrocarbon shows identified through exploration drilling, though no commercial discoveries have yet been made. The Drummond Basin was targeted to identify a potential source for oil and gas shows encountered in drilling within the Galilee Basin. The Toolebuc Formation in the Eromanga Basin has been noted as having the potential for a shale oil play and this study is supporting further assessment to identify optimal areas for future exploration through predictive modelling. This report details the results from Round 1 of the study for samples taken from the Georgina Limestone and Scartwater, Ducabrook, Mount Hall, Toolebuc, and Maryborough formations, where limited analysis of source rock characteristics has historically been undertaken. Ninety-seven samples were chosen from nine wells and sent to Geos4 in Potsdam, Germany, for source rock analysis. All samples were screened for suitability of further analysis using Rock-Eval and TOC by LECO, with immature and organic-rich samples being preferentially selected for further testing. Screened samples were analysed using pyrolysis gas chromatography (n=27), thermovaporisation (n=23), bulk kinetics (n=5), compositional kinetics (n=4), late gas analysis (n=14), and biomarker and bulk isotope analysis (n=15). These results have been integrated with existing analyses to better understand the prospectivity of the under-explored basins of Queensland.



Author(s):  
R.W. Horne

The technique of surrounding virus particles with a neutralised electron dense stain was described at the Fourth International Congress on Electron Microscopy, Berlin 1958 (see Home & Brenner, 1960, p. 625). For many years the negative staining technique in one form or another, has been applied to a wide range of biological materials. However, the full potential of the method has only recently been explored following the development and applications of optical diffraction and computer image analytical techniques to electron micrographs (cf. De Hosier & Klug, 1968; Markham 1968; Crowther et al., 1970; Home & Markham, 1973; Klug & Berger, 1974; Crowther & Klug, 1975). These image processing procedures have allowed a more precise and quantitative approach to be made concerning the interpretation, measurement and reconstruction of repeating features in certain biological systems.



Sign in / Sign up

Export Citation Format

Share Document