Local concentration inequalities and Tomaszewski’s conjecture

Author(s):  
Nathan Keller ◽  
Ohad Klein
Author(s):  
C.L. Briant

Grain boundary segregation is the process by which solute elements in a material diffuse to the grain boundaries, become trapped there, and increase their local concentration at the boundary over that in the bulk. As a result of this process this local concentration of the segregant at the grain boundary can be many orders of magnitude greater than the bulk concentration of the segregant. The importance of this problem lies in the fact that grain boundary segregation can affect many material properties such as fracture, corrosion, and grain growth.One of the best ways to study grain boundary segregation is with Auger electron spectroscopy. This spectroscopy is an extremely surface sensitive technique. When it is used to study grain boundary segregation the sample must first be fractured intergranularly in the high vacuum spectrometer. This fracture surface is then the one that is analyzed. The development of scanning Auger spectrometers have allowed researchers to first image the fracture surface that is created and then to perform analyses on individual grain boundaries.


Author(s):  
M. Haider ◽  
B. Bohrmann

The technique of Z-contrast in STEM offers the possibility to determine the local concentration of macromolecules like lipids, proteins or DNA. Contrast formation depends on the atomic composition of the particular structure. In the case of DNA, its phosphorous content discriminates it from other biological macromolecules. In our studies, sections of E. coli, the dinoflagellate Amphidinium carterae and Euglena spec. cells were used which were obtained by cryofixation followed by freeze-substitution into acetone with 3% glutaraldehyde. The samples were then embedded either in Lowicryl HM20 at low temperature or in Epon at high temperature. Sections were coated on both sides with 30Å carbon.The DF- and the inelastic image have been recorded simultaneously with a Cryo-STEM. This Cryo-STEM is equipped with a highly dispersive Electron Energy Loss Spectrometer. With this instrument pure Z-contrast can be achieved either with a Filtered DF-image divided by the inelastic image or, as is used in this paper, by dividing the conventional DF-image by an inelastic image which has been recorded with an inelastic detector whose response is dependent on the total energy loss of the inelastically scattered electrons.


Author(s):  
Peter K. Hepler ◽  
Dale A. Callaham

Calcium ions (Ca) participate in many signal transduction processes, and for that reason it is important to determine where these ions are located within the living cell, and when and to what extent they change their local concentration. Of the different Ca-specific indicators, the fluorescent dyes, developed by Grynkiewicz et al. (1), have proved most efficacious, however, their use on plants has met with several problems (2). First, the dyes as acetoxy-methyl esters are often cleaved by extracellular esterases in the plant cell wall, and thus they do not enter the cell. Second, if the dye crosses the plasma membrane it may continue into non-cytoplasmic membrane compartments. Third, even if cleaved by esterases in the cytoplasm, or introduced as the free acid into the cytoplasmic compartment, the dyes often become quickly sequestered into vacuoles and organelles, or extruded from the cell. Finally, the free acid form of the dye readily complexes with proteins reducing its ability to detect free calcium. All these problems lead to an erroneous measurement of calcium (2).


1981 ◽  
Vol 46 (7) ◽  
pp. 1577-1587 ◽  
Author(s):  
Karel Jeřábek

Catalytic activity of ion exchangers prepared by partial sulphonation of styrene-divinylbenzene copolymers in reesterifications of ethyl acetate by methanol and propanol, hydrolysis of ethyl acetate and in synthesis of bisphenol A has been compared with data on polymer structure of these catalysts and with distribution of the crosslinking agent, divinylbenzene, calculated from literature data on kinetics of copolymerisation of styrene with divinylbenzene. It was found that the polymer structure of ion exchangers influences catalytic activity predominantly by changing the local concentration of acid active sites. The results obtained indicated that the effect of transport phenomena on the rate of catalytic reactions does not depend on the degree of swelling of the ion exchangers in reaction medium but it is mainly dependent on the relative affinity of reaction components to the acid groups or to the polymer skeleton.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1686 ◽  
Author(s):  
Caretta ◽  
Denaro ◽  
D’Avella ◽  
Mucignat-Caretta

Deregulation of intracellular signal transduction pathways is a hallmark of cancer cells, clearly differentiating them from healthy cells. Differential intracellular distribution of the cAMP-dependent protein kinases (PKA) was previously detected in cell cultures and in vivo in glioblastoma and medulloblastoma. Our goal is to extend this observation to meningioma, to explore possible differences among tumors of different origins and prospective outcomes. The distribution of regulatory and catalytic subunits of PKA has been examined in tissue specimens obtained during surgery from meningioma patients. PKA RI subunit appeared more evenly distributed throughout the cytoplasm, but it was clearly detectable only in some tumors. RII was present in discrete spots, presumably at high local concentration; these aggregates could also be visualized under equilibrium binding conditions with fluorescent 8-substituted cAMP analogues, at variance with normal brain tissue and other brain tumors. The PKA catalytic subunit showed exactly overlapping pattern to RII and in fixed sections could be visualized by fluorescent cAMP analogues. Gene expression analysis showed that the PKA catalytic subunit revealed a significant correlation pattern with genes involved in meningioma. Hence, meningioma patients show a distinctive distribution pattern of PKA regulatory and catalytic subunits, different from glioblastoma, medulloblastoma, and healthy brain tissue. These observations raise the possibility of exploiting the PKA intracellular pathway as a diagnostic tool and possible therapeutic interventions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 358
Author(s):  
Hossein T. Dinani ◽  
Enrique Muñoz ◽  
Jeronimo R. Maze

Chemical sensors with high sensitivity that can be used under extreme conditions and can be miniaturized are of high interest in science and industry. The nitrogen-vacancy (NV) center in diamond is an ideal candidate as a nanosensor due to the long coherence time of its electron spin and its optical accessibility. In this theoretical work, we propose the use of an NV center to detect electrochemical signals emerging from an electrolyte solution, thus obtaining a concentration sensor. For this purpose, we propose the use of the inhomogeneous dephasing rate of the electron spin of the NV center (1/T2★) as a signal. We show that for a range of mean ionic concentrations in the bulk of the electrolyte solution, the electric field fluctuations produced by the diffusional fluctuations in the local concentration of ions result in dephasing rates that can be inferred from free induction decay measurements. Moreover, we show that for a range of concentrations, the electric field generated at the position of the NV center can be used to estimate the concentration of ions.


2021 ◽  
Vol 197 ◽  
pp. 110547
Author(s):  
Paul Eyméoud ◽  
Fabienne Ribeiro ◽  
Rémy Besson ◽  
Guy Tréglia

CrystEngComm ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 2215-2221
Author(s):  
Emma Dennis ◽  
Soumya Kundu ◽  
Deepak Thrithamarassery Gangadharan ◽  
Jingjun Huang ◽  
Victor M. Burlakov ◽  
...  

Well-oriented PbBr2 microwires with a length-to-width ratio of up to 5000 were grown using a concentration gradient in co-crystallization with perovskite. Planar-integrated microwires showed a response to X-ray photons.


Sign in / Sign up

Export Citation Format

Share Document