scholarly journals Towards Better Understanding of User Authorization Query Problem via Multi-variable Complexity Analysis

2021 ◽  
Vol 24 (3) ◽  
pp. 1-22
Author(s):  
Jason Crampton ◽  
Gregory Z. Gutin ◽  
Diptapriyo Majumdar

User authorization queries in the context of role-based access control have attracted considerable interest in the past 15 years. Such queries are used to determine whether it is possible to allocate a set of roles to a user that enables the user to complete a task, in the sense that all the permissions required to complete the task are assigned to the roles in that set. Answering such a query, in general, must take into account a number of factors, including, but not limited to, the roles to which the user is assigned and constraints on the sets of roles that can be activated. Answering such a query is known to be NP-hard. The presence of multiple parameters and the need to find efficient and exact solutions to the problem suggest that a multi-variate approach will enable us to better understand the complexity of the user authorization query problem (UAQ). In this article, we establish a number of complexity results for UAQ. Specifically, we show the problem remains hard even when quite restrictive conditions are imposed on the structure of the problem. Our fixed-parameter tractable (FPT) results show that we have to use either a parameter with potentially quite large values or quite a restricted version of UAQ. Moreover, our second FPT algorithm is complex and requires sophisticated, state-of-the-art techniques. In short, our results show that it is unlikely that all variants of UAQ that arise in practice can be solved reasonably quickly in general.

2011 ◽  
Vol 474-476 ◽  
pp. 924-927 ◽  
Author(s):  
Xiao Xin

Given an undirected graph G=(V, E) with real nonnegative weights and + or – labels on its edges, the correlation clustering problem is to partition the vertices of G into clusters to minimize the total weight of cut + edges and uncut – edges. This problem is APX-hard and has been intensively studied mainly from the viewpoint of polynomial time approximation algorithms. By way of contrast, a fixed-parameter tractable algorithm is presented that takes treewidth as the parameter, with a running time that is linear in the number of vertices of G.


2014 ◽  
Vol 50 ◽  
pp. 409-446 ◽  
Author(s):  
R. Bredereck ◽  
J. Chen ◽  
S. Hartung ◽  
S. Kratsch ◽  
R. Niedermeier ◽  
...  

Assume that each of n voters may or may not approve each of m issues. If an agent (the lobby) may influence up to k voters, then the central question of the NP-hard Lobbying problem is whether the lobby can choose the voters to be influenced so that as a result each issue gets a majority of approvals. This problem can be modeled as a simple matrix modification problem: Can one replace k rows of a binary n x m-matrix by k all-1 rows such that each column in the resulting matrix has a majority of 1s? Significantly extending on previous work that showed parameterized intractability (W[2]-completeness) with respect to the number k of modified rows, we study how natural parameters such as n, m, k, or the "maximum number of 1s missing for any column to have a majority of 1s" (referred to as "gap value g") govern the computational complexity of Lobbying. Among other results, we prove that Lobbying is fixed-parameter tractable for parameter m and provide a greedy logarithmic-factor approximation algorithm which solves Lobbying even optimally if m < 5. We also show empirically that this greedy algorithm performs well on general instances. As a further key result, we prove that Lobbying is LOGSNP-complete for constant values g>0, thus providing a first natural complete problem from voting for this complexity class of limited nondeterminism.


2020 ◽  
Author(s):  
Uéverton Souza ◽  
Fábio Protti ◽  
Maise Da Silva ◽  
Dieter Rautenbach

In this thesis we present a multivariate investigation of the complexity of some NP-hard problems, i.e., we first develop a systematic complexity analysis of these problems, defining its subproblems and mapping which one belongs to each side of an “imaginary boundary” between polynomial time solvability and intractability. After that, we analyze which sets of aspects of these problems are sources of their intractability, that is, subsets of aspects for which there exists an algorithm to solve the associated problem, whose non-polynomial time complexity is purely a function of those sets. Thus, we use classical and parameterized complexity in an alternate and complementary approach, to show which subproblems of the given problems are NP-hard and latter to diagnose for which sets of parameters the problems are fixed-parameter tractable, or in FPT. This thesis exhibits a classical and parameterized complexity analysis of different groups of NP-hard problems. The addressed problems are divided into four groups of distinct nature, in the context of data structures, combinatorial games, and graph theory: (I) and/or graph solution and its variants; (II) flooding-filling games; (III) problems on P3-convexity; (IV) problems on induced matchings.


Author(s):  
Niels Grüttemeier ◽  
Christian Komusiewicz

We study the problem of learning the structure of an optimal Bayesian network when additional structural constraints are posed on the network or on its moralized graph. More precisely, we consider the constraint that the moralized graph can be transformed to a graph from a sparse graph class Π by at most k vertex deletions. We show that for Π being the graphs with maximum degree 1, an optimal network can be computed in polynomial time when k is constant, extending previous work that gave an algorithm with such a running time for Π being the class of edgeless graphs [Korhonen & Parviainen, NIPS 2015]. We then show that further extensions or improvements are presumably impossible. For example, we show that when Π is the set of graphs in which each component has size at most three, then learning an optimal network is NP-hard even if k=0. Finally, we show that learning an optimal network with at most k edges in the moralized graph presumably is not fixed-parameter tractable with respect to k and that, in contrast, computing an optimal network with at most k arcs can be computed is fixed-parameter tractable in k.


Author(s):  
Carl E. Henderson

Over the past few years it has become apparent in our multi-user facility that the computer system and software supplied in 1985 with our CAMECA CAMEBAX-MICRO electron microprobe analyzer has the greatest potential for improvement and updating of any component of the instrument. While the standard CAMECA software running on a DEC PDP-11/23+ computer under the RSX-11M operating system can perform almost any task required of the instrument, the commands are not always intuitive and can be difficult to remember for the casual user (of which our laboratory has many). Given the widespread and growing use of other microcomputers (such as PC’s and Macintoshes) by users of the microprobe, the PDP has become the “oddball” and has also fallen behind the state-of-the-art in terms of processing speed and disk storage capabilities. Upgrade paths within products available from DEC are considered to be too expensive for the benefits received. After using a Macintosh for other tasks in the laboratory, such as instrument use and billing records, word processing, and graphics display, its unique and “friendly” user interface suggested an easier-to-use system for computer control of the electron microprobe automation. Specifically a Macintosh IIx was chosen for its capacity for third-party add-on cards used in instrument control.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xudong Zhu ◽  
Zhiyang Chen ◽  
Weiyan Shen ◽  
Gang Huang ◽  
John M. Sedivy ◽  
...  

AbstractRemarkable progress in ageing research has been achieved over the past decades. General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing. Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli, representing current hotspots as they not only (re-)shape the individual cell identity, but also involve in cell fate decision. This review focuses on the present findings and emerging concepts in epigenetic, inflammatory, and metabolic regulations and the consequences of the ageing process. Potential therapeutic interventions targeting cell senescence and regulatory mechanisms, using state-of-the-art techniques are also discussed.


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Mazen Mohamad ◽  
Jan-Philipp Steghöfer ◽  
Riccardo Scandariato

AbstractSecurity Assurance Cases (SAC) are a form of structured argumentation used to reason about the security properties of a system. After the successful adoption of assurance cases for safety, SAC are getting significant traction in recent years, especially in safety-critical industries (e.g., automotive), where there is an increasing pressure to be compliant with several security standards and regulations. Accordingly, research in the field of SAC has flourished in the past decade, with different approaches being investigated. In an effort to systematize this active field of research, we conducted a systematic literature review (SLR) of the existing academic studies on SAC. Our review resulted in an in-depth analysis and comparison of 51 papers. Our results indicate that, while there are numerous papers discussing the importance of SAC and their usage scenarios, the literature is still immature with respect to concrete support for practitioners on how to build and maintain a SAC. More importantly, even though some methodologies are available, their validation and tool support is still lacking.


Author(s):  
Fabricio Almeida-Silva ◽  
Kanhu C Moharana ◽  
Thiago M Venancio

Abstract In the past decade, over 3000 samples of soybean transcriptomic data have accumulated in public repositories. Here, we review the state of the art in soybean transcriptomics, highlighting the major microarray and RNA-seq studies that investigated soybean transcriptional programs in different tissues and conditions. Further, we propose approaches for integrating such big data using gene coexpression network and outline important web resources that may facilitate soybean data acquisition and analysis, contributing to the acceleration of soybean breeding and functional genomics research.


Sign in / Sign up

Export Citation Format

Share Document