A Module-Linking Graph Assisted Hybrid Optimization Framework for Custom Analog and Mixed-Signal Circuit Parameter Synthesis

2021 ◽  
Vol 26 (5) ◽  
pp. 1-22
Author(s):  
Mohsen Hassanpourghadi ◽  
Rezwan A. Rasul ◽  
Mike Shuo-Wei Chen

Analog and mixed-signal (AMS) computer-aided design tools are of increasing interest owing to demand for the wide range of AMS circuit specifications in the modern system on a chip and faster time to market requirement. Traditionally, to accelerate the design process, the AMS system is decomposed into smaller components (called modules ) such that the complexity and evaluation of each module are more manageable. However, this decomposition poses an interface problem, where the module’s input-output states deviate from when combined to construct the AMS system, and thus degrades the system expected performance. In this article, we develop a tool module-linking-graph assisted hybrid parameter search engine with neural networks (MOHSENN) to overcome these obstacles. We propose a module-linking-graph that enforces equality of the modules’ interfaces during the parameter search process and apply surrogate modeling of the AMS circuit via neural networks. Further, we propose a hybrid search consisting of a global optimization with fast neural network models and a local optimization with accurate SPICE models to expedite the parameter search process while maintaining the accuracy. To validate the effectiveness of the proposed approach, we apply MOHSENN to design a successive approximation register analog-to-digital converter in 65-nm CMOS technology. This demonstrated that the search time improves by a factor of 5 and 700 compared to conventional hierarchical and flat design approaches, respectively, with improved performance.

2021 ◽  
Author(s):  
Timothy Tiggeloven ◽  
Anaïs Couasnon ◽  
Chiem van Straaten ◽  
Sanne Muis ◽  
Philip Ward

<p>In order to better understand current coastal flood risk, it is critical to be able to predict the characteristics of non-tidal residuals (from here on referred to as surges), such as their temporal variation and the influence of coastal complexities on the magnitude of storm surge levels. In this study, we use an ensemble of Deep Learning (DL) models to predict hourly surge levels using four different types of neural networks and evaluate their performance. Among deep learning models, artificial neural networks (ANN) have been popular neural network models for surge level prediction, but other DL model types have not been investigated yet. In this contribution, we use three DL approaches - CNN, LSTM, and a combined CNN-LSTM model- , to capture temporal dependencies, spatial dependencies and spatio-temporal dependencies between atmospheric conditions and surges for 736 tide gauge locations. Using the high temporal and spatial resolution atmospheric reanalysis datasets ERA5 from ECMWF as predictors, we train, validate and test surge based on observed hourly surge levels derived from the GESLA-2 dataset. We benchmark our results obtained with DL to those provided by a simple probabilistic reference model based on climatology. This study shows promising results for predicting the temporal evolution of surges with DL approaches, and gives insight into the capability to gain skill using DL approaches with different Architectures for surge prediction. We therefore foresee a wide range of advantages in using DL models for coastal applications: probabilistic coastal flood hazard assessment, rapid prediction of storm surge estimates, future predictions of surge levels.</p>


Author(s):  
Alex Warstadt ◽  
Amanpreet Singh ◽  
Samuel R. Bowman

This paper investigates the ability of artificial neural networks to judge the grammatical acceptability of a sentence, with the goal of testing their linguistic competence. We introduce the Corpus of Linguistic Acceptability (CoLA), a set of 10,657 English sentences labeled as grammatical or ungrammatical from published linguistics literature. As baselines, we train several recurrent neural network models on acceptability classification, and find that our models outperform unsupervised models by Lau et al. (2016) on CoLA. Error-analysis on specific grammatical phenomena reveals that both Lau et al.’s models and ours learn systematic generalizations like subject-verb-object order. However, all models we test perform far below human level on a wide range of grammatical constructions.


Author(s):  
Muhammad Faheem Mushtaq ◽  
Urooj Akram ◽  
Muhammad Aamir ◽  
Haseeb Ali ◽  
Muhammad Zulqarnain

It is important to predict a time series because many problems that are related to prediction such as health prediction problem, climate change prediction problem and weather prediction problem include a time component. To solve the time series prediction problem various techniques have been developed over many years to enhance the accuracy of forecasting. This paper presents a review of the prediction of physical time series applications using the neural network models. Neural Networks (NN) have appeared as an effective tool for forecasting of time series.  Moreover, to resolve the problems related to time series data, there is a need of network with single layer trainable weights that is Higher Order Neural Network (HONN) which can perform nonlinearity mapping of input-output. So, the developers are focusing on HONN that has been recently considered to develop the input representation spaces broadly. The HONN model has the ability of functional mapping which determined through some time series problems and it shows the more benefits as compared to conventional Artificial Neural Networks (ANN). The goal of this research is to present the reader awareness about HONN for physical time series prediction, to highlight some benefits and challenges using HONN.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Malte Seemann ◽  
Lennart Bargsten ◽  
Alexander Schlaefer

AbstractDeep learning methods produce promising results when applied to a wide range of medical imaging tasks, including segmentation of artery lumen in computed tomography angiography (CTA) data. However, to perform sufficiently, neural networks have to be trained on large amounts of high quality annotated data. In the realm of medical imaging, annotations are not only quite scarce but also often not entirely reliable. To tackle both challenges, we developed a two-step approach for generating realistic synthetic CTA data for the purpose of data augmentation. In the first step moderately realistic images are generated in a purely numerical fashion. In the second step these images are improved by applying neural domain adaptation. We evaluated the impact of synthetic data on lumen segmentation via convolutional neural networks (CNNs) by comparing resulting performances. Improvements of up to 5% in terms of Dice coefficient and 20% for Hausdorff distance represent a proof of concept that the proposed augmentation procedure can be used to enhance deep learning-based segmentation for artery lumen in CTA images.


2018 ◽  
Vol 6 (11) ◽  
pp. 216-216 ◽  
Author(s):  
Zhongheng Zhang ◽  
◽  
Marcus W. Beck ◽  
David A. Winkler ◽  
Bin Huang ◽  
...  

2014 ◽  
Vol 571-572 ◽  
pp. 768-771
Author(s):  
Jun Liu

The 3D technology currently has in various engineering fields have a wide range of applications, all the 3D visual effects technology can bring us visual impact, the use of 3D technology produced by the television advertising more easily accepted by the audience, this paper study on the 3D computer-aided design advertising design application technology.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 854
Author(s):  
Nevena Rankovic ◽  
Dragica Rankovic ◽  
Mirjana Ivanovic ◽  
Ljubomir Lazic

Software estimation involves meeting a huge number of different requirements, such as resource allocation, cost estimation, effort estimation, time estimation, and the changing demands of software product customers. Numerous estimation models try to solve these problems. In our experiment, a clustering method of input values to mitigate the heterogeneous nature of selected projects was used. Additionally, homogeneity of the data was achieved with the fuzzification method, and we proposed two different activation functions inside a hidden layer, during the construction of artificial neural networks (ANNs). In this research, we present an experiment that uses two different architectures of ANNs, based on Taguchi’s orthogonal vector plans, to satisfy the set conditions, with additional methods and criteria for validation of the proposed model, in this approach. The aim of this paper is the comparative analysis of the obtained results of mean magnitude relative error (MMRE) values. At the same time, our goal is also to find a relatively simple architecture that minimizes the error value while covering a wide range of different software projects. For this purpose, six different datasets are divided into four chosen clusters. The obtained results show that the estimation of diverse projects by dividing them into clusters can contribute to an efficient, reliable, and accurate software product assessment. The contribution of this paper is in the discovered solution that enables the execution of a small number of iterations, which reduces the execution time and achieves the minimum error.


2015 ◽  
Vol 11 (1) ◽  
pp. 20140603 ◽  
Author(s):  
Katharina C. Engel ◽  
Lisa Männer ◽  
Manfred Ayasse ◽  
Sandra Steiger

Same-sex sexual behaviour (SSB) has been documented in a wide range of animals, but its evolutionary causes are not well understood. Here, we investigated SSB in the light of Reeve's acceptance threshold theory. When recognition is not error-proof, the acceptance threshold used by males to recognize potential mating partners should be flexibly adjusted to maximize the fitness pay-off between the costs of erroneously accepting males and the benefits of accepting females. By manipulating male burying beetles' search time for females and their reproductive potential, we influenced their perceived costs of making an acceptance or rejection error. As predicted, when the costs of rejecting females increased, males exhibited more permissive discrimination decisions and showed high levels of SSB; when the costs of accepting males increased, males were more restrictive and showed low levels of SSB. Our results support the idea that in animal species, in which the recognition cues of females and males overlap to a certain degree, SSB is a consequence of an adaptive discrimination strategy to avoid the costs of making rejection errors.


Author(s):  
Fathi Ahmed Ali Adam, Mahmoud Mohamed Abdel Aziz Gamal El-Di

The study examined the use of artificial neural network models to predict the exchange rate in Sudan through annual exchange rate data between the US dollar and the Sudanese pound. This study aimed to formulate the models of artificial neural networks in which the exchange rate can be predicted in the coming period. The importance of the study is that it is necessary to use modern models to predict instead of other classical models. The study hypothesized that the models of artificial neural networks have a high ability to predict the exchange rate. Use models of artificial neural networks. The most important results ability of artificial neural networks models to predict the exchange rate accurately, Form MLP (1-1-1) is the best model chosen for that purpose. The study recommended the development of the proposed model for long-term forecasting.


2021 ◽  
pp. 99-116
Author(s):  
D.J. Balanev ◽  

An iterated version of the game "Prisoner's Dilemma" is used as a model of cooperation largely due to the wide range of strategies that the subjects can use. The problem of the effec-tiveness of strategies for solving the Iterated Prisoner's Dilemma (IPD) is most often considered from the point of view of information models, where strategies do not take into account the relationship that arise when real people play. Some of these strategies are obvious, others depend upon social context. In our paper, we use one of the promising directions in the development of studying IPD strategies – the use of artificial neural networks. We use neural networks as a modeling tool and as a part of game environment. The main goal of our work is to build an information model that predicts the behavior of an individual person as well as group of people in the situation of solving of social dilemma. It takes into account social relationship, including those caused by experimental influence, gender differences, and individual differences in the strategy for solving cognitive tasks. The model demonstrates the transition of individual actions into socially determined behavior. Evaluation of the effect of socialization associated with the procedure of the game provides additional information about the effectiveness and characteristics of the experimental impact.The paper defines the minimum unit of analysis of the IPD player's strategy in a group, the identity with which can be considered as a variable. It discusses the influence of the experi-mentally formed group identity on the change of preferred strategies in social dilemmas. We use the possibilities of neural networks as means of categorizing the results of the prisoner's iterative dilemma in terms of the strategy applied by the player, as well as social factors. We define the patterns of changes in the IPD player's strategy before and after socialization are determined. The paper discusses the questions of real player's inclination to use IPD solution strategies in their pure form or to use the same strategy before and after experimental inter-ventions related to social identity formation. It is shown that experimentally induced socialization can be considered as a mechanism for increasing the degree of certainty in the choice of strategies when solving IPD task. It is found out that the models based on neural networks turn out to be more efficient after experi-mentally evoked social identity in a group of 6 people; and the models based on neural net-works are least effective in the case of predicting a subject's belonging to a gender group. When solving IPD problems by real people, it turns out to be possible to talk about generalized strategies that take into account not only the evolutionary properties of «pure» strategies, but also reflect various social factors.


Sign in / Sign up

Export Citation Format

Share Document