Explainable AI: A Multispectral Palm-Vein Identification System with New Augmentation Features

Author(s):  
Yung-Yao Chen ◽  
Sin-Ye Jhong ◽  
Chih-Hsien Hsia ◽  
Kai-Lung Hua

Recently, as one of the most promising biometric traits, the vein has attracted the attention of both academia and industry because of its living body identification and the convenience of the acquisition process. State-of-the-art techniques can provide relatively good performance, yet they are limited to specific light sources. Besides, it still has poor adaptability to multispectral images. Despite the great success achieved by convolutional neural networks (CNNs) in various image understanding tasks, they often require large training samples and high computation that are infeasible for palm-vein identification. To address this limitation, this work proposes a palm-vein identification system based on lightweight CNN and adaptive multi-spectral method with explainable AI. The principal component analysis on symmetric discrete wavelet transform (SMDWT-PCA) technique for vein images augmentation method is adopted to solve the problem of insufficient data and multispectral adaptability. The depth separable convolution (DSC) has been applied to reduce the number of model parameters in this work. To ensure that the experimental result demonstrates accurately and robustly, a multispectral palm image of the public dataset (CASIA) is also used to assess the performance of the proposed method. As result, the palm-vein identification system can provide superior performance to that of the former related approaches for different spectrums.

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2095
Author(s):  
Ashwini Pradhan ◽  
Debahuti Mishra ◽  
Kaberi Das ◽  
Ganapati Panda ◽  
Sachin Kumar ◽  
...  

Computer-aided diagnosis permits biopsy specimen analysis by creating quantitative images of brain diseases which enable the pathologists to examine the data properly. It has been observed from other image classification algorithms that the Extreme Learning Machine (ELM) demonstrates superior performance in terms of computational efforts. In this study, to classify the brain Magnetic Resonance Images as either normal or diseased, a hybridized Salp Swarm Algorithm-based ELM (ELM-SSA) is proposed. The SSA is employed to optimize the parameters associated with ELM model, whereas the Discrete Wavelet Transformation and Principal Component Analysis have been used for the feature extraction and reduction, respectively. The performance of the proposed “ELM-SSA” is evaluated through simulation study and compared with the standard classifiers such as Back-Propagation Neural Network, Functional Link Artificial Neural Network, and Radial Basis Function Network. All experimental validations have been carried out using two different brain disease datasets: Alzheimer’s and Hemorrhage. The simulation results demonstrate that the “ELM-SSA” is potentially superior to other hybrid methods in terms of ROC, AUC, and accuracy. To achieve better performance, reduce randomness, and overfitting, each algorithm has been run multiple times and a k-fold stratified cross-validation strategy has been used.


2021 ◽  
Vol 13 (14) ◽  
pp. 2656
Author(s):  
Furong Shi ◽  
Tong Zhang

Deep-learning technologies, especially convolutional neural networks (CNNs), have achieved great success in building extraction from areal images. However, shape details are often lost during the down-sampling process, which results in discontinuous segmentation or inaccurate segmentation boundary. In order to compensate for the loss of shape information, two shape-related auxiliary tasks (i.e., boundary prediction and distance estimation) were jointly learned with building segmentation task in our proposed network. Meanwhile, two consistency constraint losses were designed based on the multi-task network to exploit the duality between the mask prediction and two shape-related information predictions. Specifically, an atrous spatial pyramid pooling (ASPP) module was appended to the top of the encoder of a U-shaped network to obtain multi-scale features. Based on the multi-scale features, one regression loss and two classification losses were used for predicting the distance-transform map, segmentation, and boundary. Two inter-task consistency-loss functions were constructed to ensure the consistency between distance maps and masks, and the consistency between masks and boundary maps. Experimental results on three public aerial image data sets showed that our method achieved superior performance over the recent state-of-the-art models.


2016 ◽  
Vol 30 (3) ◽  
pp. 349-357 ◽  
Author(s):  
Aura Pedrera-Parrilla ◽  
Eric C. Brevik ◽  
Juan V. Giráldez ◽  
Karl Vanderlinden

Abstract Understanding of soil spatial variability is needed to delimit areas for precision agriculture. Electromagnetic induction sensors which measure the soil apparent electrical conductivity reflect soil spatial variability. The objectives of this work were to see if a temporally stable component could be found in electrical conductivity, and to see if temporal stability information acquired from several electrical conductivity surveys could be used to better interpret the results of concurrent surveys of electrical conductivity and soil water content. The experimental work was performed in a commercial rainfed olive grove of 6.7 ha in the ‘La Manga’ catchment in SW Spain. Several soil surveys provided gravimetric soil water content and electrical conductivity data. Soil electrical conductivity values were used to spatially delimit three areas in the grove, based on the first principal component, which represented the time-stable dominant spatial electrical conductivity pattern and explained 86% of the total electrical conductivity variance. Significant differences in clay, stone and soil water contents were detected between the three areas. Relationships between electrical conductivity and soil water content were modelled with an exponential model. Parameters from the model showed a strong effect of the first principal component on the relationship between soil water content and electrical conductivity. Overall temporal stability of electrical conductivity reflects soil properties and manifests itself in spatial patterns of soil water content.


2021 ◽  
Vol 13 (6) ◽  
pp. 1205
Author(s):  
Caidan Zhao ◽  
Gege Luo ◽  
Yilin Wang ◽  
Caiyun Chen ◽  
Zhiqiang Wu

A micro-Doppler signature (m-DS) based on the rotation of drone blades is an effective way to detect and identify small drones. Deep-learning-based recognition algorithms can achieve higher recognition performance, but they needs a large amount of sample data to train models. In addition to the hovering state, the signal samples of small unmanned aerial vehicles (UAVs) should also include flight dynamics, such as vertical, pitch, forward and backward, roll, lateral, and yaw. However, it is difficult to collect all dynamic UAV signal samples under actual flight conditions, and these dynamic flight characteristics will lead to the deviation of the original features, thus affecting the performance of the recognizer. In this paper, we propose a small UAV m-DS recognition algorithm based on dynamic feature enhancement. We extract the combined principal component analysis and discrete wavelet transform (PCA-DWT) time–frequency characteristics and texture features of the UAV’s micro-Doppler signal and use a dynamic attribute-guided augmentation (DAGA) algorithm to expand the feature domain for model training to achieve an adaptive, accurate, and efficient multiclass recognition model in complex environments. After the training model is stable, the average recognition accuracy rate can reach 98% during dynamic flight.


Author(s):  
Maryam Abedini ◽  
Horriyeh Haddad ◽  
Marzieh Faridi Masouleh ◽  
Asadollah Shahbahrami

This study proposes an image denoising algorithm based on sparse representation and Principal Component Analysis (PCA). The proposed algorithm includes the following steps. First, the noisy image is divided into overlapped [Formula: see text] blocks. Second, the discrete cosine transform is applied as a dictionary for the sparse representation of the vectors created by the overlapped blocks. To calculate the sparse vector, the orthogonal matching pursuit algorithm is used. Then, the dictionary is updated by means of the PCA algorithm to achieve the sparsest representation of vectors. Since the signal energy, unlike the noise energy, is concentrated on a small dataset by transforming into the PCA domain, the signal and noise can be well distinguished. The proposed algorithm was implemented in a MATLAB environment and its performance was evaluated on some standard grayscale images under different levels of standard deviations of white Gaussian noise by means of peak signal-to-noise ratio, structural similarity indexes, and visual effects. The experimental results demonstrate that the proposed denoising algorithm achieves significant improvement compared to dual-tree complex discrete wavelet transform and K-singular value decomposition image denoising methods. It also obtains competitive results with the block-matching and 3D filtering method, which is the current state-of-the-art for image denoising.


2018 ◽  
Vol 10 (12) ◽  
pp. 1934 ◽  
Author(s):  
Bao-Di Liu ◽  
Wen-Yang Xie ◽  
Jie Meng ◽  
Ye Li ◽  
Yanjiang Wang

In recent years, the collaborative representation-based classification (CRC) method has achieved great success in visual recognition by directly utilizing training images as dictionary bases. However, it describes a test sample with all training samples to extract shared attributes and does not consider the representation of the test sample with the training samples in a specific class to extract the class-specific attributes. For remote-sensing images, both the shared attributes and class-specific attributes are important for classification. In this paper, we propose a hybrid collaborative representation-based classification approach. The proposed method is capable of improving the performance of classifying remote-sensing images by embedding the class-specific collaborative representation to conventional collaborative representation-based classification. Moreover, we extend the proposed method to arbitrary kernel space to explore the nonlinear characteristics hidden in remote-sensing image features to further enhance classification performance. Extensive experiments on several benchmark remote-sensing image datasets were conducted and clearly demonstrate the superior performance of our proposed algorithm to state-of-the-art approaches.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wenzhi Zhang ◽  
Runchuan Li ◽  
Shengya Shen ◽  
Jinliang Yao ◽  
Yan Peng ◽  
...  

Myocardial infarction (MI) is one of the most common cardiovascular diseases threatening human life. In order to accurately distinguish myocardial infarction and have a good interpretability, the classification method that combines rule features and ventricular activity features is proposed in this paper. Specifically, according to the clinical diagnosis rule and the pathological changes of myocardial infarction on the electrocardiogram, the local information extracted from the Q wave, ST segment, and T wave is computed as the rule feature. All samples of the QT segment are extracted as ventricular activity features. Then, in order to reduce the computational complexity of the ventricular activity features, the effects of Discrete Wavelet Transform (DWT), Principal Component Analysis (PCA), and Locality Preserving Projections (LPP) on the extracted ventricular activity features are compared. Combining rule features and ventricular activity features, all the 12 leads features are fused as the ultimate feature vector. Finally, eXtreme Gradient Boosting (XGBoost) is used to identify myocardial infarction, and the overall accuracy rate of 99.86% is obtained on the Physikalisch-Technische Bundesanstalt (PTB) database. This method has a good medical diagnosis basis while improving the accuracy, which is very important for clinical decision-making.


2020 ◽  
Vol 58 (5A) ◽  
pp. 150
Author(s):  
Thuy Thi Pham ◽  
Hung Quoc Nguyen ◽  
Khai Manh Nguyen

The incredible growth of plastic waste is a major concern for the whole society in recent years. The accumulation of plastic waste has badly effects on wildlife, habitat, and humans. Plastics that act as pollutants are categorized into different sizes, from micro to macro. Disposable plastic waste was collected at the bakery shop and removed the residue food by tap water and NaOH 1M to remove residual food. This study focuses on modify waste plastic by sulfuric acid to bind the sulfonated function group on the structure of the polystyrene chain at room temperature. The sulfonated product was used for removing heavy metal ion in water with the mechanism of the ion exchange process. The prepared ion exchange material was characterized by FTIR and SEM to ensure that the sulfonation process has happened. The chromium (III) ion removal by modified ion exchange product in continuous mode was affected by an operational parameter such as the bed height of sulfonated material. The Yoon-Nelson and Thomas model were used to analyze the experimental result and the model parameters were evaluated. From this result, it can be concluded that with the increasing amount of sulfonated waste polystyrene, exchange capacity, and the time required for a 50% adsorbate breakthrough was higher.


Author(s):  
S. Shanawaz Basha ◽  
N. Musrat Sultana

Biometrics refers to the automatic recognition of individuals based on their physiological and/or behavioral characteristics, such as faces, finger prints, iris, and gait. In this paper, we focus on the application of finger print recognition system. The spectral minutiae fingerprint recognition is a method to represent a minutiae set as a fixedlength feature vector, which is invariant to translation, and in which rotation and scaling become translations, so that they can be easily compensated for. Based on the spectral minutiae features, this paper introduces two feature reduction algorithms: the Column Principal Component Analysis and the Line Discrete Fourier Transform feature reductions, which can efficiently compress the template size with a reduction rate of 94%.With reduced features, we can also achieve a fast minutiae-based matching algorithm. This paper presents the performance of the spectral minutiae fingerprint recognition system, this fast operation renders our system suitable for a large-scale fingerprint identification system, thus significantly reducing the time to perform matching, especially in systems like, police patrolling, airports etc,. The spectral minutiae representation system tends to significantly reduce the false acceptance rate with a marginal increase in the false rejection rate.


Sign in / Sign up

Export Citation Format

Share Document