How Compatible is Alexa with Dual Tasking? — Towards Intelligent Personal Assistants for Dual-Task Situations

2021 ◽  
Author(s):  
Shashank Ahire ◽  
Aaron Priegnitz ◽  
Oguz Önbas ◽  
Michael Rohs ◽  
Wolfgang Nejdl
2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 287-288
Author(s):  
Jeffrey Hausdorff ◽  
Nofar Schneider ◽  
Marina Brozgol ◽  
Pablo Cornejo Thumm ◽  
Nir Giladi ◽  
...  

Abstract The simultaneous performance of a secondary task while walking (i.e., dual tasking) increases motor-cognitive interference and fall risk in older adults. Combining transcranial direct current stimulation (tDCS) with the concurrent performance of a task that putatively involves the same brain networks targeted by the tDCS may reduce the negative impact of dual-tasking on walking. We examined whether tDCS applied while walking reduces the dual-task costs to gait and whether this combination is better than tDCS alone or walking alone (with sham stimulation). In 25 healthy older adults (aged 75.7±10.5yrs), a double-blind, within-subject, cross-over pilot study evaluated the acute after-effects of 20 minutes of tDCS targeting the primary motor cortex and the dorsal lateral pre frontal cortex during three separate sessions:1) tDCS while walking on a treadmill in a virtual-reality environment (tDCS+walking), 2) tDCS while seated (tDCS+seated), and 3) walking in the virtual-reality environment with sham tDCS (sham+walking). The complex walking condition taxed motor and cognitive abilities. During each session, single- and dual-task walking and cognitive function were assessed before and immediately after stimulation. Compared to pre-tDCS performance, tDCS+walking reduced the dual-task cost to gait speed (p=0.004) and other gait features (e.g., variability p=0.02), and improved (p<0.001) executive function (Stroop interference score). tDCS+seated and sham+walking did not affect the dual-task cost to gait speed (p>0.17). These initial findings demonstrate that tDCS delivered during challenging walking ameliorates dual-task gait and executive function in older adults, suggesting that the concurrent performance of related tasks enhances the efficacy of the neural stimulation and mobility.


Author(s):  
Lasse Pelzer ◽  
Christoph Naefgen ◽  
Robert Gaschler ◽  
Hilde Haider

AbstractDual-task costs might result from confusions on the task-set level as both tasks are not represented as distinct task-sets, but rather being integrated into a single task-set. This suggests that events in the two tasks are stored and retrieved together as an integrated memory episode. In a series of three experiments, we tested for such integrated task processing and whether it can be modulated by regularities between the stimuli of the two tasks (across-task contingencies) or by sequential regularities within one of the tasks (within-task contingencies). Building on the experimental approach of feature binding in action control, we tested whether the participants in a dual-tasking experiment will show partial-repetition costs: they should be slower when only the stimulus in one of the two tasks is repeated from Trial n − 1 to Trial n than when the stimuli in both tasks repeat. In all three experiments, the participants processed a visual-manual and an auditory-vocal tone-discrimination task which were always presented concurrently. In Experiment 1, we show that retrieval of Trial n − 1 episodes is stable across practice if the stimulus material is drawn randomly. Across-task contingencies (Experiment 2) and sequential regularities within a task (Experiment 3) can compete with n − 1-based retrieval leading to a reduction of partial-repetition costs with practice. Overall the results suggest that participants do not separate the processing of the two tasks, yet, within-task contingencies might reduce integrated task processing.


Gerontology ◽  
2018 ◽  
Vol 65 (2) ◽  
pp. 164-173 ◽  
Author(s):  
Frederico Pieruccini-Faria ◽  
Yanina Sarquis-Adamson ◽  
Manuel Montero-Odasso

Background: Older adults with Mild Cognitive Impairment (MCI) are at higher risk of falls and injuries, but the underlying mechanism is poorly understood. Inappropriate anticipatory postural adjustments to overcome balance perturbations are affected by cognitive decline. However, it is unknown whether anticipatory gait control to avoid an obstacle is affected in MCI. Objective: Using the dual-task paradigm, we aim to assess whether gait control is affected during obstacle negotiation challenges in older adults with MCI. Methods: Seventy-nine participants (mean age = 72.0 ± 2.7 years; women = 30.3%) from the “Gait and Brain Study” were included in this study (controls = 27; MCI = 52). In order to assess the anticipatory control behaviour for obstacle negotiation, a 6-m electronic walkway embedded with sensors recorded foot prints to measure gait speed and step length variability, during early (3 steps before the late phase) and late (3 steps before the obstacle) pre-crossing phases of an ad hoc obstacle, set at 15% of participant’s height. Participants walked under single- and dual-task gait (counting backwards by 1’s from 100 while walking) conditions. Three-way mixed repeated-measures analysis of variance models examined differences in gait performance between groups when transitioning between pre-crossing phases towards an obstacle during single- and dual-task conditions. Analyses were adjusted for age, sex, years of education, lower limb function, fear of falling, medical status, depressive symptoms, baseline gait speed and executive function. Results: A significant three-way interaction among groups, pre-crossing phases and task showed that participants with MCI attenuated the gait deceleration (p = 0.02) and performed fewer step length adjustments (p = 0.03) when approaching the obstacle compared with controls while dual-tasking. These interactions were attenuated when executive function performance was added as a covariate in the adjusted statistical model. Conclusion: Older adults with MCI attenuate the anticipatory gait adjustments needed to avoid an obstacle when dual-tasking. Deficits in higher-order cognitive processing may limit obstacle negotiation capabilities in MCI populations, being a potential falls risk factor.


Author(s):  
Samantha L. Epling ◽  
Graham K. Edgar ◽  
Paul N. Russell ◽  
William S. Helton

Dual-tasking situations are common in military, firefighting, search and rescue, and other high risk operations. Cognitive and physical demands can occur at the same time, but little is known about the specific demands of real world tasks or how they might interfere with one another. It is well known that attempting simultaneous tasks will divide and divert attention, but to what extent? In this experiment, a narrative memory task was paired with an outdoor running task, and as expected, memory task performance declined when participants were asked to run at the same time. It is suggested that more cognitively demanding physical tasks be used within this dual-task paradigm for a better understanding of the human cognitive resource structure, i.e., how and why certain tasks interfere.


2020 ◽  
Author(s):  
Diego Mac-Auliffe ◽  
Benoit Chatard ◽  
Mathilde Petton ◽  
Anne-Claire Croizé ◽  
Florian Sipp ◽  
...  

ABSTRACTDual-tasking is extremely prominent nowadays, despite ample evidence that it comes with a performance cost: the Dual-Task (DT) cost. Neuroimaging studies have established that tasks are more likely to interfere if they rely on common brain regions, but the precise neural origin of the DT cost has proven elusive so far, mostly because fMRI does not record neural activity directly and cannot reveal the key effect of timing, and how the spatio-temporal neural dynamics of the tasks coincide.Recently, DT electrophysiological studies in monkeys have recorded neural populations shared by the two tasks with millisecond precision to provide a much finer understanding of the origin of the DT cost. We used a similar approach in humans, with intracranial EEG, to assess the neural origin of the DT cost in a particularly challenging naturalistic paradigm which required accurate motor responses to frequent visual stimuli (task T1) and the retrieval of information from long-term memory (task T2), as when answering passengers’ questions while driving.We found that T2 elicited neuroelectric interferences in the gamma-band (>40 Hz), in key regions of the T1 network including the Multiple Demand Network. They reproduced the effect of disruptive electrocortical stimulations to create a situation of dynamical incompatibility, which might explain the DT cost. Yet, participants were able to flexibly adapt their strategy to minimize interference, and most surprisingly, reduce the reliance of T1 on key regions of the executive control network – the anterior insula and the dorsal anterior cingulate cortex – with no performance decrement.HIGHLIGHTS- First direct evidence in humans of neural interferences between two tasks.- First explanation of the Dual-Task cost at the neural level in humans.- First Dual-Tasking study with intracranial EEG in naturalistic conditions.


2018 ◽  
Vol 120 (1) ◽  
pp. 330-342
Author(s):  
Joshua Baker ◽  
Antonio Castro ◽  
Andrew K. Dunn ◽  
Suvobrata Mitra

Everyday cognitive tasks are frequently performed under dual-task conditions alongside continuous sensorimotor coordinations (CSCs) such as driving, walking, or balancing. Observed interference in these dual-task settings is commonly attributed to demands on executive function or attentional resources, but the time course and reciprocity of interference are not well understood at the level of information-processing components. Here we used electrophysiology to study the detailed chronometry of dual-task interference between a visual oddball task and a continuous visuomanual tracking task. The oddball task’s electrophysiological components were linked to underlying cognitive processes, and the tracking task served as a proxy for the continuous cycle of state monitoring and adjustment inherent to CSCs. Dual-tasking interfered with the oddball task’s accuracy and attentional processes (attenuated P2 and P3b magnitude and parietal alpha-band event-related desynchronization), but errors in tracking due to dual-tasking accrued at a later timescale and only in trials in which the target stimulus appeared and its tally had to be incremented. Interference between cognitive tasks and CSCs can be asymmetric in terms of timing as well as affected information-processing components. NEW & NOTEWORTHY Interference between cognitive tasks and continuous sensorimotor coordination (CSC) has been widely reported, but this is the first demonstration that the cognitive operation that is impaired by concurrent CSC may not be the one that impairs the CSC. Also demonstrated is that interference between such tasks can be temporally asymmetric. The asynchronicity of this interference has significant implications for understanding and mitigating loss of mobility in old age, and for rehabilitation for neurological impairments.


2017 ◽  
Vol 24 (3) ◽  
pp. 247-258 ◽  
Author(s):  
Emma Butchard-MacDonald ◽  
Lorna Paul ◽  
Jonathan J. Evans

AbstractBackground:People with relapsing remitting multiple sclerosis (PwRRMS) suffer disproportionate decrements in gait under dual-task conditions, when walking and a cognitive task are combined. There has been much less investigation of the impact of cognitive demands on balance.Objectives:This study investigated whether: (1) PwRRMS show disproportionate decrements in postural stability under dual-task conditions compared to healthy controls, and (2) dual-task decrements are associated with everyday dual-tasking difficulties. The impact of mood, fatigue, and disease severity on dual-tasking was also examined.Methods:A total of 34 PwRRMS and 34 matched controls completed cognitive (digit span) and balance (movement of center of pressure on Biosway on stable and unstable surfaces) tasks under single- and dual-task conditions. Everyday dual-tasking was measured using the Dual-Tasking Questionnaire. Mood was measured by the Hospital Anxiety & Depression Scale. Fatigue was measuredviathe Modified Fatigue Index Scale.Results:No differences in age, gender, years of education, estimated pre-morbid IQ, or baseline digit span between groups. Compared with controls, PwRRMS showed significantly greater decrement in postural stability under dual-task conditions on an unstable surface (p=.007), but not a stable surface (p=.679). Balance decrement scores were not correlated with everyday dual-tasking difficulties or fatigue. Stable surface balance decrement scores were significantly associated with levels of anxiety (rho=0.527;p=.001) and depression (rho=0.451;p=.007).Conclusions:RRMS causes dual-tasking difficulties, impacting balance under challenging conditions, which may contribute to increased risk of gait difficulties and falls. The relationship between anxiety/depression and dual-task decrement suggests that emotional factors may be contributing to dual-task difficulties. (JINS, 2018,24, 247–258)


2019 ◽  
Author(s):  
Dierick Frédéric ◽  
Buisseret Fabien ◽  
Renson Mathieu ◽  
Luta Adèle Mae

AbstractDigital natives developed in an electronic dual tasking world. This paper addresses two questions. Do digital natives respond differently under a cognitive load realized during a locomotor task in a dual-tasking paradigm and how does this address the concept of safety? We investigate the interplay between cognitive (talking and solving Raven’s matrices) and locomotor (walking on a treadmill) tasks in a sample of 17 graduate level participants. The costs of dual-tasking on gait were assessed by studying changes in stride interval time and its variability at long-range. A safety index was designed and computed from total relative change between the variability indices in the single walking and dual-task conditions. As expected, results indicate high Raven’s scores with gait changes found between the dual task conditions compared to the single walking task. Greater changes are observed in the talking condition compared to solving Raven’s matrices, resulting in high safety index values observed in 5 participants. We conclude that, although digital natives are efficient in performing the dual tasks when they are not emotional-based, modification of gait are observable. Due to the variation within participants and the observation of high safety index values in several of them, individuals that responded poorly to low cognitive loads should be encouraged to not perform dual task when executing a primate task of safety to themselves or others.


2019 ◽  
Author(s):  
Lace Padilla ◽  
Spencer Castro ◽  
Q. Samuel Quinan ◽  
Ian Tanner Ruginski ◽  
Sarah Creem-Regehr

Cognitive science has established widely used and validated procedures for evaluating working memory in numerous applied domains, but surprisingly few studies have employed these methodologies to assess claims about the impacts of visualizations on working memory. The lack of information visualization research that uses validated procedures for measuring working memory may be due, in part, to the absence of cross-domain methodological guidance tailored explicitly to the unique needs of visualization research. This paper presents a set of clear, practical, and empirically validated methods for evaluating working memory during visualization tasks and provides readers with guidance in selecting an appropriate working memory evaluation paradigm. As a case study, we illustrate multiple methods for evaluating working memory in a visual-spatial aggregation task with geospatial data. The results show that the use of dual-task experimental designs (simultaneous performance of several tasks compared to single-task performance) and pupil dilation can reveal working memory demands associated with task difficulty and dual-tasking. In a dual-task experimental design, measures of task completion times and pupillometry revealed the working memory demands associated with both task difficulty and dual-tasking. Pupillometry demonstrated that participants’ pupils were significantly larger when they were completing a more difficult task and when multitasking. We propose that researchers interested in the relative differences in working memory between visualizations should consider a converging methods approach, where physiological measures and behavioral measures of working memory are employed to generate a rich evaluation of visualization effort.


2013 ◽  
Vol 27 (2) ◽  
pp. 183-191 ◽  
Author(s):  
Jennifer A. Foley ◽  
Reiner Kaschel ◽  
Sergio Della Sala

Several studies have found dual tasking to be impaired in Alzheimer's disease (AD), but unaffected by healthy ageing. It is not known if this deficit is specific to AD, or also present in other neurodegenerative disorders that can occur in later life, such as Parkinson's disease (PD). Therefore, this study investigated dual tasking in 13 people with PD, 26 AD and 42 healthy age-matched controls. The people with AD demonstrated a specific impairment in dual tasking, which worsened with increasing disease severity. The people with PD did not demonstrate any deficits in dual tasking ability, when compared to healthy controls, suggesting that the dual task impairment is specific to AD.


Sign in / Sign up

Export Citation Format

Share Document