scholarly journals Towards online optimization for power grids

2021 ◽  
Vol 1 (1) ◽  
pp. 51-58
Author(s):  
Deming Yuan ◽  
Abhishek Bhardwaj ◽  
Ian Petersen ◽  
Elizabeth L. Ratnam ◽  
Guodong Shi

In this note, we discuss potential advantages in extending distributed optimization frameworks to enhance support for power grid operators managing an influx of online sequential decisions. First, we review the state-of-the-art distributed optimization frameworks for electric power systems, and explain how distributed algorithms deliver scalable solutions. Next, we introduce key concepts and paradigms for online optimization, and present a distributed online optimization framework highlighting important performance characteristics. Finally, we discuss the connection and difference between offline and online distributed optimization, showcasing the suitability of such optimization techniques for power grid applications.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4776
Author(s):  
Seyed Mahdi Miraftabzadeh ◽  
Michela Longo ◽  
Federica Foiadelli ◽  
Marco Pasetti ◽  
Raul Igual

The recent advances in computing technologies and the increasing availability of large amounts of data in smart grids and smart cities are generating new research opportunities in the application of Machine Learning (ML) for improving the observability and efficiency of modern power grids. However, as the number and diversity of ML techniques increase, questions arise about their performance and applicability, and on the most suitable ML method depending on the specific application. Trying to answer these questions, this manuscript presents a systematic review of the state-of-the-art studies implementing ML techniques in the context of power systems, with a specific focus on the analysis of power flows, power quality, photovoltaic systems, intelligent transportation, and load forecasting. The survey investigates, for each of the selected topics, the most recent and promising ML techniques proposed by the literature, by highlighting their main characteristics and relevant results. The review revealed that, when compared to traditional approaches, ML algorithms can handle massive quantities of data with high dimensionality, by allowing the identification of hidden characteristics of (even) complex systems. In particular, even though very different techniques can be used for each application, hybrid models generally show better performances when compared to single ML-based models.


2019 ◽  
Vol 217 ◽  
pp. 01017
Author(s):  
Nikita Tomin ◽  
Daniil Panasetsky ◽  
Alexey Iskakov

The state of the art of transient stability and steady-state (small signal) stability in power grids are reviewed. Transient stability concepts are illustrated with simple examples; in particular, we consider two machine learning-based methods for computing region of attraction: ROA produced by Neural Network Lyapunov Function; estimation of the ROA of IEEE 39-bus system using Gaussian process and Converse Lyapunov function. We discuss steady state stability in power systems, and using Prony’s modal analysis for evaluating small signal stability for the 7 Bus Test system and real French power system.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4667 ◽  
Author(s):  
Adriana Mar ◽  
Pedro Pereira ◽  
João F. Martins

One of the most critical infrastructures in the world is electrical power grids (EPGs). New threats affecting EPGs, and their different consequences, are analyzed in this survey along with different approaches that can be taken to prevent or minimize those consequences, thus improving EPG resilience. The necessity for electrical power systems to become resilient to such events is becoming compelling; indeed, it is important to understand the origins and consequences of faults. This survey provides an analysis of different types of faults and their respective causes, showing which ones are more reported in the literature. As a result of the analysis performed, it was possible to identify four clusters concerning mitigation approaches, as well as to correlate them with the four different states of the electrical power system resilience curve.


2020 ◽  
Author(s):  
Shutang You

Cyber security is important of power grids to ensure secure and reliable power supply. This paper presented a cyber- secure framework for power grids based on federated learning. In this framework, each entity, which may be a distribution/transmission/generation service provider or even a customer, can contribute to the overall system immunity and robustness to cyber-attacks, while not required to share local data, which may have privacy, legal and property concerns. The main idea is to use the federated learning framework to share the knowledge learned from local data instead of sharing power grid data itself. With complete knowledge learned from all data from the power grid, each entity is better positioned to defend the cyber-attacks and improve power grid resiliency. Future work on applying this federated learning based framework in power systems is also discussed.


2017 ◽  
Vol 65 (5) ◽  
pp. 579-588
Author(s):  
A. Domino ◽  
K. Zymmer ◽  
M. Parchomiuk

Abstract The paper presents different solutions applicable in power converter systems for connecting power grids with energy storage systems such as superconducting magnetic energy storage (SMES), supercapacitor energy storage (SES) or chemical batteries. Those systems are characterized by bidirectional current flow between energy storage and power grid. Two-level converters (AC-DC and DC-AC converters) dedicated for low power energy storage compatible with 3×400 V-type power grids are proposed. High power systems are connected with 3×6 kV-type power grids via transformers that adjust voltage to the particular energy storage or directly, based on multilevel power converters (AC-DC and DC-AC) or dual active bridge (DAB) systems. Solutions ensuring power grid compatibility with several energy storage systems of the same electrical parameters as well as of different voltage-current characteristics are also proposed. Selected simulation results illustrating operation of two system topologies of 200 kW power for two-level converter and neutral point clamped (NPC) three-level converter are presented.


2013 ◽  
Vol 732-733 ◽  
pp. 639-645
Author(s):  
Bi Qiang Tang ◽  
Yi Jun Yu ◽  
Shu Hai Feng ◽  
Feng Li

With the UHV (Ultra High Voltage) power grid construction and the interconnection of regional power grids, the scale of power grids in China is increasing rapidly. At the same time, significant uncertainty and variability is being introduced into power grid operation with the integration of large-scale renewable energy in power systems. All of these pose an enormous challenge to the operation control of power systems in China. For a long time, online static security analysis, as an important part of EMS (Energy Management System), has been an effective tool for power grid operation. However, it is increasingly difficult for traditional static security analysis in serial computing mode to be online applied in bulk power grids in China. A new practical parallel approach for online static security analysis is put forward in this paper. A multithread parallelism is introduced into contingency screening, detailed contingency evaluation and decision support for reducing the execution time. By employing the multithread technology, the hardware resources of multi-processor/multi-core computer can be fully used and the program can be speeded up effectively. The performance of the parallel static security analysis is demonstrated by tests on two large-scale power systems. The test results show that the proposed method can be online applied in real bulk power grids.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5641
Author(s):  
Gaber Magdy ◽  
Abualkasim Bakeer ◽  
Morsy Nour ◽  
Eduard Petlenkov

In light of the challenges of integrating more renewable energy sources (RESs) into the utility grid, the virtual synchronous generator (VSG) will become an indispensable configuration of modern power systems. RESs are gradually replacing the conventional synchronous generators that are responsible for supplying the utility grid with the inertia damping properties, thus renewable power grids are more vulnerable to disruption than traditional power grids. Therefore, the VSG is presented to mimic the behavior of a real synchronous generator in the power grid through the virtual rotor concept (i.e., which emulates the properties of inertia and damping) and virtual primary and secondary controls (i.e., which emulate the conventional frequency control loops). However, inadequate imitation of the inertia power owing to the low and short-term power of the energy storage systems (ESSs) may cause system instability and fail dramatically. To overcome this issue, this paper proposes a VSG based on superconducting magnetic energy storage (SMES) technology to emulate the needed inertia power in a short time and thus stabilizing the system frequency at different disturbances. The proposed VSG based on SMES is applied to improve the frequency stability of a real hybrid power grid, Egyptian Power System (EPS), with high renewables penetration levels, nonlinearities, and uncertainties. The performance superiority of the proposed VSG-based SMES is validated by comparing it with the traditional VSG approach based on battery ESSs. The simulation results demonstrated that the proposed VSG based on the SMES system could significantly promote ultra-low-inertia renewable power systems for several contingencies.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Kaiyang Zhong ◽  
Ping Wang ◽  
Jiaming Pei ◽  
Jiyuan Xu ◽  
Zonglin Han ◽  
...  

Vehicle to Grid (V2G) refers to the optimal management of the charging and discharging behavior of electric vehicles through reasonable strategies and advanced communication. In the process of interaction, there are three stakeholders: the power grid, operators (charging stations), and EV users. In real life, the impact of peak-valley difference caused a lot of power loss when charging. At the same time, the loss of current is also a loss for power grid companies and EV users. In this paper, we propose a multiobjective optimization method to reduce the current loss and determine the relationship between the parameters and the objective function and constraints. This optimization method uses a genetic algorithm for multiobjective optimization. Through the analysis of the number of vehicles and load curve of AC class I and AC class II electric vehicles before and after optimization in each period, we found that the charging load of electric vehicles played a role of valley filling in the low valley price stage and played a peak-cutting role in a peak price period.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 115
Author(s):  
Nasser Hosseinzadeh ◽  
Asma Aziz ◽  
Apel Mahmud ◽  
Ameen Gargoom ◽  
Mahbub Rabbani

The main purpose of developing microgrids (MGs) is to facilitate the integration of renewable energy sources (RESs) into the power grid. RESs are normally connected to the grid via power electronic inverters. As various types of RESs are increasingly being connected to the electrical power grid, power systems of the near future will have more inverter-based generators (IBGs) instead of synchronous machines. Since IBGs have significant differences in their characteristics compared to synchronous generators (SGs), particularly concerning their inertia and capability to provide reactive power, their impacts on the system dynamics are different compared to SGs. In particular, system stability analysis will require new approaches. As such, research is currently being conducted on the stability of power systems with the inclusion of IBGs. This review article is intended to be a preface to the Special Issue on Voltage Stability of Microgrids in Power Systems. It presents a comprehensive review of the literature on voltage stability of power systems with a relatively high percentage of IBGs in the generation mix of the system. As the research is developing rapidly in this field, it is understood that by the time that this article is published, and further in the future, there will be many more new developments in this area. Certainly, other articles in this special issue will highlight some other important aspects of the voltage stability of microgrids.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1589
Author(s):  
Krzysztof Kołek ◽  
Andrzej Firlit ◽  
Krzysztof Piątek ◽  
Krzysztof Chmielowiec

Monitoring power quality (PQ) indicators is an important part of modern power grids’ maintenance. Among different PQ indicators, flicker severity coefficients Pst and Plt are measures of voltage fluctuations. In state-of-the-art PQ measuring devices, the flicker measurement channel is usually implemented as a dedicated processor subsystem. Implementation of the IEC 61000-4-15 compliant flicker measurement algorithm requires a significant amount of computational power. In typical PQ analysers, the flicker measurement is usually implemented as a part of the meter’s algorithm performed by the main processor. This paper considers the implementation of the flicker measurement as an FPGA module to offload the processor subsystem or operate as an IP core in FPGA-based system-on-chip units. The measurement algorithm is developed and validated as a Simulink diagram, which is then converted to a fixed-point representation. Parts of the diagram are applied for automatic VHDL code generation, and the classifier block is implemented as a local soft-processor system. A simple eight-bit processor operates within the flicker measurement coprocessor and performs statistical operations. Finally, an IP module is created that can be considered as a flicker coprocessor module. When using the coprocessor, the main processor’s only role is to trigger the coprocessor and read the results, while the coprocessor independently calculates the flicker coefficients.


Sign in / Sign up

Export Citation Format

Share Document