Contemporary Liquid Water on Mars?

Author(s):  
James J. Wray

The martian surface preserves a record of aqueous fluids throughout the planet's history, but when, where, and even whether such fluids exist at the contemporary surface remains an area of ongoing research. Large water volumes remain on the planet today, but mostly bound in minerals or frozen in the subsurface, with limited direct evidence for aquifers. A role for water has been suggested to explain active surface processes monitored by orbital and landed spacecraft, such as gullies and slope streaks across a range of latitudes; however, dry mechanisms appear at least equally plausible for many active slopes. The low modern atmospheric density and cold surface temperatures challenge models for producing sufficient volumes of water to do the observed geomorphic work. The seeming ubiquity of salts in martian soils facilitates liquid stability but also has implications for the habitability of any such liquids. ▪ A thin modern atmosphere and low temperatures make pure liquid water unstable on the surface of modern Mars. ▪ Widespread salts could enhance liquid durability by lowering the freezing point and slowing evaporation. ▪ Dielectric measurements suggest active brines deep beneath the south pole and, in transient thin films, within shallow polar soils. ▪ Some characteristics of gullies, recurring slope lineae, and other active features challenge both current wet and dry formation models. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 49 is May 28, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Author(s):  
Jonathan D. Gammell ◽  
Marlin P. Strub

Motion planning is a fundamental problem in autonomous robotics that requires finding a path to a specified goal that avoids obstacles and takes into account a robot's limitations and constraints. It is often desirable for this path to also optimize a cost function, such as path length. Formal path-quality guarantees for continuously valued search spaces are an active area of research interest. Recent results have proven that some sampling-based planning methods probabilistically converge toward the optimal solution as computational effort approaches infinity. This article summarizes the assumptions behind these popular asymptotically optimal techniques and provides an introduction to the significant ongoing research on this topic. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Ethan Sorrell ◽  
Michael E. Rule ◽  
Timothy O’Leary

Brain–machine interfaces (BMIs) promise to restore movement and communication in people with paralysis and ultimately allow the human brain to interact seamlessly with external devices, paving the way for a new wave of medical and consumer technology. However, neural activity can adapt and change over time, presenting a substantial challenge for reliable BMI implementation. Large-scale recordings in animal studies now allow us to study how behavioral information is distributed in multiple brain areas, and state-of-the-art interfaces now incorporate models of the brain as a feedback controller. Ongoing research aims to understand the impact of neural plasticity on BMIs and find ways to leverage learning while accommodating unexpected changes in the neural code. We review the current state of experimental and clinical BMI research, focusing on what we know about the neural code, methods for optimizing decoders for closed-loop control, and emerging strategies for addressing neural plasticity. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Zheyan Jin ◽  
Yingpei Zhao ◽  
Dongyu Sui ◽  
Zhigang Yang

This study investigated the effect of air pressure on the freezing process of a water droplet on a cold surface. A common belief is that bulk liquid water is incompressible and air pressure does not affect the freezing point of the bulk liquid water over a wide range of pressure. However, our results demonstrated that, for a water droplet on a cold surface, its freezing process started early at lower ambient pressures. Such a phenomenon can be explained by the effects of the evaporative cooling.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Ronak V. Patel ◽  
Ikuo Hirano ◽  
Nirmala Gonsalves

Eosinophilic esophagitis (EoE) is a relatively recently identified but now frequently encountered antigen/immune-mediated disease which places significant burden on patients and the healthcare system. With its growing prevalence and recognition by healthcare providers in multiple disciplines, substantial progress has been made regarding the diagnostic criteria, clinical evaluation, tools for disease assessment, and immune pathways related to pathogenesis. Current treatment goals focus on the amelioration of inflammation and prevention of remodeling consequences using proton pump inhibitors, swallowed topical steroids, elimination diets, and esophageal dilation. Ongoing research holds promise for more efficacious and targeted therapies as well as a personalized approach to the care of patients with EoE. Expected final online publication date for the Annual Review of Medicine, Volume 72 is January 27, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7421
Author(s):  
Abhilash Vakkada Ramachandran ◽  
María-Paz Zorzano ◽  
Javier Martín-Torres

The water content of the upper layers of the surface of Mars is not yet quantified. Laboratory simulations are the only feasible way to investigate this in a controlled way on Earth, and then compare it with remote and in situ observations of spacecrafts on Mars. Describing the processes that may induce changes in the water content of the surface is critical to determine the present-day habitability of the Martian surface, to understand the atmospheric water cycle, and to estimate the efficiency of future water extraction procedures from the regolith for In Situ Resource Utilization (ISRU). This paper illustrates the application of the SpaceQ facility to simulate the near-surface water cycle under Martian conditions. Rover Environmental Monitoring Station (REMS) observations at Gale crater show a non-equilibrium situation in the atmospheric H2O volume mixing ratio (VMR) at night-time, and there is a decrease in the atmospheric water content by up to 15 g/m2 within a few hours. This reduction suggests that the ground may act at night as a cold sink scavenging atmospheric water. Here, we use an experimental approach to investigate the thermodynamic and kinetics of water exchange between the atmosphere, a non-porous surface (LN2-chilled metal), various salts, Martian regolith simulant, and mixtures of salts and simulant within an environment which is close to saturation. We have conducted three experiments: the stability of pure liquid water around the vicinity of the triple point is studied in experiment 1, as well as observing the interchange of water between the atmosphere and the salts when the surface is saturated; in experiment 2, the salts were mixed with Mojave Martian Simulant (MMS) to observe changes in the texture of the regolith caused by the interaction with hydrates and liquid brines, and to quantify the potential of the Martian regolith to absorb and retain water; and experiment 3 investigates the evaporation of pure liquid water away from the triple point temperature when both the air and ground are at the same temperature and the relative humidity is near saturation. We show experimentally that frost can form spontaneously on a surface when saturation is reached and that, when the temperature is above 273.15 K (0 °C), this frost can transform into liquid water, which can persist for up to 3.5 to 4.5 h at Martian surface conditions. For comparison, we study the behavior of certain deliquescent salts that exist on the Martian surface, which can increase their mass between 32% and 85% by absorption of atmospheric water within a few hours. A mixture of these salts in a 10% concentration with simulant produces an aggregated granular structure with a water gain of approximately 18- to 50-wt%. Up to 53% of the atmospheric water was captured by the simulated ground, as pure liquid water, hydrate, or brine.


Author(s):  
Elliott S. Chiu ◽  
Sue VandeWoude

Endogenous retroviruses (ERVs) serve as markers of ancient viral infections and provide invaluable insight into host and viral evolution. ERVs have been exapted to assist in performing basic biological functions, including placentation, immune modulation, and oncogenesis. A subset of ERVs share high nucleotide similarity to circulating horizontally transmitted exogenous retrovirus (XRV) progenitors. In these cases, ERV–XRV interactions have been documented and include ( a) recombination to result in ERV–XRV chimeras, ( b) ERV induction of immune self-tolerance to XRV antigens, ( c) ERV antigen interference with XRV receptor binding, and ( d) interactions resulting in both enhancement and restriction of XRV infections. Whereas the mechanisms governing recombination and immune self-tolerance have been partially determined, enhancement and restriction of XRV infection are virus specific and only partially understood. This review summarizes interactions between six unique ERV–XRV pairs, highlighting important ERV biological functions and potential evolutionary histories in vertebrate hosts. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 9 is February 16, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Sarah Knuckey ◽  
Joshua D. Fisher ◽  
Amanda M. Klasing ◽  
Tess Russo ◽  
Margaret L. Satterthwaite

The human rights movement is increasingly using interdisciplinary, multidisciplinary, mixed-methods, and quantitative factfinding. There has been too little analysis of these shifts. This article examines some of the opportunities and challenges of these methods, focusing on the investigation of socioeconomic human rights. By potentially expanding the amount and types of evidence available, factfinding's accuracy and persuasiveness can be strengthened, bolstering rights claims. However, such methods can also present significant challenges and may pose risks in individual cases and to the human rights movement generally. Interdisciplinary methods can be costly in human, financial, and technical resources; are sometimes challenging to implement; may divert limited resources from other work; can reify inequalities; may produce “expertise” that disempowers rightsholders; and could raise investigation standards to an infeasible or counterproductive level. This article includes lessons learned and questions to guide researchers and human rights advocates considering mixed-methods human rights factfinding. Expected final online publication date for the Annual Review of Law and Social Science, Volume 17 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 50 (1) ◽  
Author(s):  
Simeon Floyd

Conversation analysis is a method for the systematic study of interaction in terms of a sequential turn-taking system. Research in conversation analysis has traditionally focused on speakers of English, and it is still unclear to what extent the system observed in that research applies to conversation more generally around the world. However, as this method is now being applied to conversation in a broader range of languages, it is increasingly possible to address questions about the nature of interactional diversity across different speech communities. The approach of pragmatic typology first applies sequential analysis to conversation from different speech communities and then compares interactional patterns in ways analogous to how traditional linguistic typology compares morphosyntax. This article discusses contemporary literature in pragmatic typology, including single-language studies and multilanguage comparisons reflecting both qualitative and quantitative methods. This research finds that microanalysis of face-to-face interaction can identify both universal trends and culture-specific interactional tendencies. Expected final online publication date for the Annual Review of Anthropology, Volume 50 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Yonit Maroudas-Sacks ◽  
Kinneret Keren

Morphogenesis is one of the most remarkable examples of biological pattern formation. Despite substantial progress in the field, we still do not understand the organizational principles responsible for the robust convergence of the morphogenesis process across scales to form viable organisms under variable conditions. Achieving large-scale coordination requires feedback between mechanical and biochemical processes, spanning all levels of organization and relating the emerging patterns with the mechanisms driving their formation. In this review, we highlight the role of mechanics in the patterning process, emphasizing the active and synergistic manner in which mechanical processes participate in developmental patterning rather than merely following a program set by biochemical signals. We discuss the value of applying a coarse-grained approach toward understanding this complex interplay, which considers the large-scale dynamics and feedback as well as complementing the reductionist approach focused on molecular detail. A central challenge in this approach is identifying relevant coarse-grained variables and developing effective theories that can serve as a basis for an integrated framework for understanding this remarkable pattern-formation process. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document