Thermal Decontamination Technologies for Microorganisms and Mycotoxins in Low-Moisture Foods

Author(s):  
Li-Zhen Deng ◽  
Parag Prakash Sutar ◽  
Arun S. Mujumdar ◽  
Yang Tao ◽  
Zhongli Pan ◽  
...  

The contamination risks of microorganisms and mycotoxins in low-moisture foods have heightened public concern. Developing novel decontamination technologies to improve the safety of low-moisture foods is of great interest in both economics and public health. This review summarizes the working principles and applications of novel thermal decontamination technologies such as superheated steam, infrared, microwave, and radio-frequency heating as well as extrusion cooking. These methods of decontamination can effectively reduce the microbial load on products and moderately destruct the mycotoxins. Meanwhile, several integrated technologies have been developed that take advantage of synergistic effects to achieve the maximum destruction of contaminants and minimize the deterioration of products. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 12 is March 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Author(s):  
William R. Aimutis

Our global population is growing at a pace to exceed 10 billion people by the year 2050. This growth will place pressure on the agricultural production of food to feed the hungry masses. One category that will be strained is protein. Per capita protein consumption is rising in virtually every country for both nutritional reasons and consumption enjoyment. The United Nations estimates protein demand will double by 2050, and this will result in a critical overall protein shortage if drastic changes are not made in the years preceding these changes. Therefore, the world is in the midst of identifying technological breakthroughs to make protein more readily available and sustainable for future generations. One protein sourcing category that has grown in the past decade is plant-based proteins, which seem to fit criteria established by discerning consumers, including healthy, sustainable, ethical, and relatively inexpensive. Although demand for plant-based protein continues to increase, these proteins are challenging to utilize in novel food formulations. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Saeed M. Ghazani ◽  
Alejandro G. Marangoni

Cocoa butter displays complex crystallization behavior and six crystal polymorphic forms. Although the crystal structure of cocoa butter has been studied extensively, the molecular interactions between cocoa butter triacylglycerols in relation to polymorphic transformations from metastable forms (forms III and IV) to stable crystal forms (forms V and VI) remain largely unknown. In this review, the triclinic polymorphism and melting profiles of the major triacylglycerols in cocoa butter—POP, POS, and SOS—are reviewed, and their binary and ternary phase behaviors in metastable (pseudoβ′) and stable (β2) crystal forms are discussed. We also attempt to clarify how the transformation of cocoa butter from form IV to V, as a critical step in the tempering of chocolate, is controlled by POS interactions with both POP and SOS. Moreover, we show how the crystal forms V and VI of cocoa butter are templated by crystal forms β3 and β1 of POS, respectively. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 12 is March 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Vanessa Las Heras ◽  
Silvia Melgar ◽  
John MacSharry ◽  
Cormac G.M. Gahan

Diet exerts a major influence upon host immune function and the gastrointestinal microbiota. Although components of the human diet (including carbohydrates, fats, and proteins) are essential sources of nutrition for the host, they also influence immune function directly through interaction with innate and cell-mediated immune regulatory mechanisms. Regulation of the microbiota community structure also provides a mechanism by which food components influence host immune regulatory processes. Here, we consider the complex interplay between components of the modern (Western) diet, the microbiota, and host immunity in the context of obesity and metabolic disease, inflammatory bowel disease, and infection. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Konstantina Kyriakopoulou ◽  
Julia K. Keppler ◽  
Atze Jan van der Goot ◽  
Remko M. Boom

The increasing size and affluence of the global population have led to a rising demand for high-protein foods such as dairy and meat. Because it will be impossible to supply sufficient protein to everyone solely with dairy and meat, we need to transition at least part of our diets toward protein foods that are more sustainable to produce. The best way to convince consumers to make this transition is to offer products that easily fit into their current habits and diets by mimicking the original foods. This review focuses on methods of creating an internal microstructure close to that of the animal-based originals. One can directly employ plant products, use intermediates such as cell factories, or grow cultured meat by using nutrients of plant origin. We discuss methods of creating high-quality alternatives to meat and dairy foods, describe their relative merits, and provide an outlook toward the future. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 12 is March 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Osman Y. Koyun ◽  
Todd R. Callaway ◽  
David J. Nisbet ◽  
Robin C. Anderson

The gastrointestinal tract, or gut, microbiota is a microbial community containing a variety of microorganisms colonizing throughout the gut that plays a crucial role in animal health, growth performance, and welfare. The gut microbiota is closely associated with the quality and microbiological safety of foods and food products originating from animals. The gut microbiota of the host can be modulated and enhanced in ways that improve the quality and safety of foods of animal origin. Probiotics—also known as direct-fed microbials—competitive exclusion cultures, prebiotics, and synbiotics have been utilized to achieve this goal. Reducing foodborne pathogen colonization in the gut prior to slaughter and enhancing the chemical, nutritional, or sensory characteristics of foods (e.g., meat, milk, and eggs) are two of many positive outcomes derived from the use of these competitive enhancement–based treatments in food-producing animals. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Yue Xiao ◽  
Qixiao Zhai ◽  
Hao Zhang ◽  
Wei Chen ◽  
Colin Hill

Lactobacillus and Bifidobacterium spp. are best understood for their applications as probiotics, which are often transient, but as commensals it is probable that stable colonization in the gut is important for their beneficial roles. Recent research suggests that the establishment and persistence of strains of Lactobacillus and Bifidobacterium in the gut are species- and strain-specific and affected by natural history, genomic adaptability, and metabolic interactions of the bacteria and the microbiome and immune aspects of the host but also regulated by diet. This provides new perspectives on the underlying molecular mechanisms. With an emphasis on host–microbe interaction, this review outlines how the characteristics of individual Lactobacillus and Bifidobacterium bacteria, the host genotype and microbiome structure, diet, and host–microbe coadaptation during bacterial gut transition determine and influence the colonization process. The diet-tuned and personally tailored colonization can be achieved via a machine learning prediction model proposed here. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 12 is March 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Richard A. Williams

New forms of protein are being developed at a rapid rate as older forms of protein, particularly meat and poultry, are coming under attack for nutritional, environmental, food safety, and animal welfare issues. To date, the FDA and USDA have split oversight of the new technologies that include genetic engineering and precision fermentation. Because these new products address the problems associated with traditional proteins, consumer demand appears to be overcoming fundamental fears associated with innovative foods. Currently, agencies are struggling with naming issues for the new proteins and, in some cases, possibly being forced to use costly and lengthy premarket approvals. Because of the complexity of new production methods, the speed of development, and the potential benefits, a new system of regulation may be necessary. It would consist of one of the existing agencies becoming a super regulator overseeing private companies that specialize and compete with each other and are regulated quickly and competently. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 12 is March 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Jovan Ilić ◽  
Ilija Djekic ◽  
Igor Tomasevic ◽  
Filip Oosterlinck ◽  
Marco A. van den Berg

To increase the appeal of plant protein–based meat analogs, further progress needs to be made in their sensory perception. Given the limited number of studies on meat analogs, this review focuses on structure, oral processing, and sensory perception of meat and subsequently translates the insights to meat analogs. An extensive number of publications has built the current understanding of meat mechanical and structural properties, but inconsistencies concerning terminology and methodology execution as well as the wide variety in terms of natural origin limit solid conclusions about the control parameters for oral processing and sensory perception. Consumer-relevant textural aspects such as tenderness and juiciness are not directly correlated to single structural features but depend on an interplay of multiple factors and thus require a holistic approach. We discuss the differences in mastication and disintegration of meat and meat analogs and provide an outlook toward converting skeptical consumers into returning customers. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Haruka Tomishima ◽  
Kathleen Luo ◽  
Alyson E. Mitchell

Almonds ( Prunus dulcis) are one of the most consumed tree-nuts worldwide, with commercial production in arid environments such as California, Spain, and Australia. The high consumption of almonds is partly due to their versatile usage in products such as gluten-free flour and dairy alternatives as well as them being a source of protein in vegetarian diets. They contain high concentrations of health-promoting compounds such as Vitamin E and have demonstrated benefits for reducing the risk of cardiovascular disease and improving vascular health. In addition, almonds are the least allergenic tree nut and contain minute quantities of cyanogenic glycosides. Production has increased significantly in the past two decades with 3.12 billion pounds of kernel meat produced in California alone in 2020 (USDA 2021), leading to a new emphasis on the valorization of the coproducts (e.g., hulls, shells, skins, and blanch water). This article presents a review of the chemical composition of almond kernels (e.g., macro and micronutrients, phenolic compounds, cyanogenic glycosides, and allergens) and the current research exploring the valorization of almond coproducts. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document