Shelterin-Mediated Telomere Protection

2018 ◽  
Vol 52 (1) ◽  
pp. 223-247 ◽  
Author(s):  
Titia de Lange

For more than a decade, it has been known that mammalian cells use shelterin to protect chromosome ends. Much progress has been made on the mechanism by which shelterin prevents telomeres from inadvertently activating DNA damage signaling and double-strand break (DSB) repair pathways. Shelterin averts activation of three DNA damage response enzymes [the ataxia-telangiectasia-mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) kinases and poly(ADP-ribose) polymerase 1 (PARP1)], blocks three DSB repair pathways [classical nonhomologous end joining (c-NHEJ), alternative (alt)-NHEJ, and homology-directed repair (HDR)], and prevents hyper-resection at telomeres. For several of these functions, mechanistic insights have emerged. In addition, much has been learned about how shelterin maintains the telomeric 3′ overhang, forms and protects the t-loop structure, and promotes replication through telomeres. These studies revealed that shelterin is compartmentalized, with individual subunits dedicated to distinct aspects of the end-protection problem. This review focuses on the current knowledge of shelterin-mediated telomere protection, highlights differences between human and mouse shelterin, and discusses some of the questions that remain.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi196-vi196
Author(s):  
Sharmistha Pal ◽  
Jie Bian ◽  
Brendan Price ◽  
Dipanjan Chowdhury ◽  
Daphne Haas-Kogan

Abstract New approaches to the treatment of diffuse intrinsic pontine gliomas (DIPGs) are desperately needed. DNA damage response is essential for cells to maintain genome integrity as DNA is damaged by both endogenous and exogenous stressors. Many cancer cells exhibit hyper-dependency on specific DNA repair pathways due to either defects in DNA repair mechanisms and/or high levels of endogenous stress leading to accumulation of DNA damage lesions. Identification of DIPG-specific DNA repair deficiencies and resultant dependencies may establish novel therapeutic strategies for DIPGs. METHODS To identify pathways critical for DIPG cell survival, genome wide CRISPR-Cas9 screen was performed on patient derived DIPG cell lines followed by gene set enrichment analyses. To monitor the effects of pathway inhibition on survival, apoptosis, DNA damage and repair, assays were performed to measure cell proliferation, cleaved-caspase3, gamma-H2AX and reporter based-DNA repair efficiency. RESULTS Our unbiased CRISPR approach to uncover vulnerabilities in DIPGs identified DNA double strand break (DSBs) repair pathways as essential for DIPG cell proliferation and survival. Further studies revealed high basal DSBs in DIPG cells compared to neural stem cells and primary astrocytes that suggest dependence of DIPG cell survival on specific DSB repair pathways. We confirmed the intrinsic reliance of DIPG cells on the specific DSB repair pathway of mutagenic end-joining, and defined a key role for DNA repair in suppressing endogenous DNA damage-induced apoptotic cell death. CONCLUSION DIPG cells have high endogenous DNA damage levels and escape catastrophic genomic instability and cell death by engaging DNA repair pathways, in particular the mutagenic end-joining DNA repair pathway. Inhibition of this specific DNA repair pathway represents a promising new avenue for the treatment of DIPGs.


2020 ◽  
Vol 48 (21) ◽  
pp. e126-e126
Author(s):  
Rebeka Eki ◽  
Jane She ◽  
Mahmut Parlak ◽  
Mouadh Benamar ◽  
Kang-Ping Du ◽  
...  

Abstract DNA double-strand breaks (DSBs) are highly cytotoxic lesions that can lead to chromosome rearrangements, genomic instability and cell death. Consequently, cells have evolved multiple mechanisms to efficiently repair DSBs to preserve genomic integrity. We have developed a DSB repair assay system, designated CDDR (CRISPR–Cas9-based Dual-fluorescent DSB Repair), that enables the detection and quantification of DSB repair outcomes in mammalian cells with high precision. CDDR is based on the introduction and subsequent resolution of one or two DSB(s) in an intrachromosomal fluorescent reporter following the expression of Cas9 and sgRNAs targeting the reporter. CDDR can discriminate between high-fidelity (HF) and error-prone non-homologous end-joining (NHEJ), as well as between proximal and distal NHEJ repair. Furthermore, CDDR can detect homology-directed repair (HDR) with high sensitivity. Using CDDR, we found HF-NHEJ to be strictly dependent on DNA Ligase IV, XRCC4 and XLF, members of the canonical branch of NHEJ pathway (c-NHEJ). Loss of these genes also stimulated HDR, and promoted error-prone distal end-joining. Deletion of the DNA repair kinase ATM, on the other hand, stimulated HF-NHEJ and suppressed HDR. These findings demonstrate the utility of CDDR in characterizing the effect of repair factors and in elucidating the balance between competing DSB repair pathways.


2004 ◽  
Vol 32 (6) ◽  
pp. 964-966 ◽  
Author(s):  
C.E. West ◽  
W.M. Waterworth ◽  
P.A. Sunderland ◽  
C.M. Bray

DSBs (double-strand breaks) are one of the most serious forms of DNA damage that can occur in a cell's genome. DNA replication in cells containing DSBs, or following incorrect repair, may result in the loss of large amounts of genetic material, aneuploid daughter cells and cell death. There are two major pathways for DSB repair: HR (homologous recombination) uses an intact copy of the damaged region as a template for repair, whereas NHEJ (non-homologous end-joining) rejoins DNA ends independently of DNA sequence. In most plants, NHEJ is the predominant DSB repair pathway. Previously, the Arabidopsis NHEJ mutant atku80 was isolated and found to display hypersensitivity to bleomycin, a drug that causes DSBs in DNA. In the present study, the transcript profiles of wild-type and atku80 mutant plants grown in the presence and absence of bleomycin are determined by microarray analysis. Several genes displayed very strong transcriptional induction specifically in response to DNA damage, including the characterized DSB repair genes AtRAD51 and AtBRCA1. These results identify novel candidate genes that encode components of the DSB repair pathways active in NHEJ mutant plants.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1506
Author(s):  
Angelos Papaspyropoulos ◽  
Nefeli Lagopati ◽  
Ioanna Mourkioti ◽  
Andriani Angelopoulou ◽  
Spyridon Kyriazis ◽  
...  

Protection of genome integrity is vital for all living organisms, particularly when DNA double-strand breaks (DSBs) occur. Eukaryotes have developed two main pathways, namely Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR), to repair DSBs. While most of the current research is focused on the role of key protein players in the functional regulation of DSB repair pathways, accumulating evidence has uncovered a novel class of regulating factors termed non-coding RNAs. Non-coding RNAs have been found to hold a pivotal role in the activation of DSB repair mechanisms, thereby safeguarding genomic stability. In particular, long non-coding RNAs (lncRNAs) have begun to emerge as new players with vast therapeutic potential. This review summarizes important advances in the field of lncRNAs, including characterization of recently identified lncRNAs, and their implication in DSB repair pathways in the context of tumorigenesis.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
K. C. Summers ◽  
F. Shen ◽  
E. A. Sierra Potchanant ◽  
E. A. Phipps ◽  
R. J. Hickey ◽  
...  

Repair of double-stranded breaks (DSBs) is vital to maintaining genomic stability. In mammalian cells, DSBs are resolved in one of the following complex repair pathways: nonhomologous end-joining (NHEJ), homologous recombination (HR), or the inclusive DNA damage response (DDR). These repair pathways rely on factors that utilize reversible phosphorylation of proteins as molecular switches to regulate DNA repair. Many of these molecular switches overlap and play key roles in multiple pathways. For example, the NHEJ pathway and the DDR both utilize DNA-PK phosphorylation, whereas the HR pathway mediates repair with phosphorylation of RPA2, BRCA1, and BRCA2. Also, the DDR pathway utilizes the kinases ATM and ATR, as well as the phosphorylation of H2AX and MDC1. Together, these molecular switches regulate repair of DSBs by aiding in DSB recognition, pathway initiation, recruitment of repair factors, and the maintenance of repair mechanisms.


Author(s):  
Natalja Beying ◽  
◽  
Carla Schmidt ◽  
Holger Puchta ◽  
◽  
...  

In genome engineering, after targeted induction of double strand breaks (DSBs) researchers take advantage of the organisms’ own repair mechanisms to induce different kinds of sequence changes into the genome. Therefore, understanding of the underlying mechanisms is essential. This chapter will review in detail the two main pathways of DSB repair in plant cells, non-homologous end joining (NHEJ) and homologous recombination (HR) and sum up what we have learned over the last decades about them. We summarize the different models that have been proposed and set these into relation with the molecular outcomes of different classes of DSB repair. Moreover, we describe the factors that have been identified to be involved in these pathways. Applying this knowledge of DSB repair should help us to improve the efficiency of different types of genome engineering in plants.


2020 ◽  
Vol 21 (4) ◽  
pp. 1380 ◽  
Author(s):  
Giovanni Pasquini ◽  
Virginia Cora ◽  
Anka Swiersy ◽  
Kevin Achberger ◽  
Lena Antkowiak ◽  
...  

Mutations in more than 200 retina-specific genes have been associated with inherited retinal diseases. Genome editing represents a promising emerging field in the treatment of monogenic disorders, as it aims to correct disease-causing mutations within the genome. Genome editing relies on highly specific endonucleases and the capacity of the cells to repair double-strand breaks (DSBs). As DSB pathways are cell-cycle dependent, their activity in postmitotic retinal neurons, with a focus on photoreceptors, needs to be assessed in order to develop therapeutic in vivo genome editing. Three DSB-repair pathways are found in mammalian cells: Non-homologous end joining (NHEJ); microhomology-mediated end joining (MMEJ); and homology-directed repair (HDR). While NHEJ can be used to knock out mutant alleles in dominant disorders, HDR and MMEJ are better suited for precise genome editing, or for replacing entire mutation hotspots in genomic regions. Here, we analyzed transcriptomic in vivo and in vitro data and revealed that HDR is indeed downregulated in postmitotic neurons, whereas MMEJ and NHEJ are active. Using single-cell RNA sequencing analysis, we characterized the dynamics of DSB repair pathways in the transition from dividing cells to postmitotic retinal cells. Time-course bulk RNA-seq data confirmed DSB repair gene expression in both in vivo and in vitro samples. Transcriptomic DSB repair pathway profiles are very similar in adult human, macaque, and mouse retinas, but not in ground squirrel retinas. Moreover, human-induced pluripotent stem-cell-derived neurons and retinal organoids can serve as well suited in vitro testbeds for developing genomic engineering approaches in photoreceptors. Our study provides additional support for designing precise in vivo genome-editing approaches via MMEJ, which is active in mature photoreceptors.


Author(s):  
Ruben Schep ◽  
Eva K. Brinkman ◽  
Christ Leemans ◽  
Xabier Vergara ◽  
Ben Morris ◽  
...  

AbstractDNA double-strand break (DSB) repair is mediated by multiple pathways, including classical non-homologous end-joining pathway (NHEJ) and several homology-driven repair pathways. This is particularly important for Cas9-mediated genome editing, where the outcome critically depends on the pathway that repairs the break. It is thought that the local chromatin context affects the pathway choice, but the underlying principles are poorly understood. Using a newly developed multiplexed reporter assay in combination with Cas9 cutting, we systematically measured the relative activities of three DSB repair pathways as function of chromatin context in >1,000 genomic locations. This revealed that NHEJ is broadly biased towards euchromatin, while microhomology-mediated end-joining (MMEJ) is more efficient in specific heterochromatin contexts. In H3K27me3-marked heterochromatin, inhibition of the H3K27 methyltransferase EZH2 shifts the balance towards NHEJ. Single-strand templated repair (SSTR), often used for precise CRISPR editing, competes with MMEJ, and this competition is weakly associated with chromatin context. These results provide insight into the impact of chromatin on DSB repair pathway balance, and guidance for the design of Cas9-mediated genome editing experiments.


2016 ◽  
Vol 113 (48) ◽  
pp. 13809-13814 ◽  
Author(s):  
Jessica L. Alexander ◽  
Kelly Beagan ◽  
Terry L. Orr-Weaver ◽  
Mitch McVey

Rereplication generates double-strand breaks (DSBs) at sites of fork collisions and causes genomic damage, including repeat instability and chromosomal aberrations. However, the primary mechanism used to repair rereplication DSBs varies across different experimental systems. InDrosophilafollicle cells, developmentally regulated rereplication is used to amplify six genomic regions, two of which contain genes encoding eggshell proteins. We have exploited this system to test the roles of several DSB repair pathways during rereplication, using fork progression as a readout for DSB repair efficiency. Here we show that a null mutation in the microhomology-mediated end-joining (MMEJ) component, polymerase θ/mutagen-sensitive 308 (mus308), exhibits a sporadic thin eggshell phenotype and reduced chorion gene expression. Unlike other thin eggshell mutants,mus308displays normal origin firing but reduced fork progression at two regions of rereplication. We also find that MMEJ compensates for loss of nonhomologous end joining to repair rereplication DSBs in a site-specific manner. Conversely, we show that fork progression is enhanced in the absence of bothDrosophilaRad51 homologs, spindle-A and spindle-B, revealing homologous recombination is active and actually impairs fork movement during follicle cell rereplication. These results demonstrate that several DSB repair pathways are used during rereplication in the follicle cells and their contribution to productive fork progression is influenced by genomic position and repair pathway competition. Furthermore, our findings illustrate that specific rereplication DSB repair pathways can have major effects on cellular physiology, dependent upon genomic context.


2002 ◽  
Vol 22 (17) ◽  
pp. 6306-6317 ◽  
Author(s):  
Nuray Akyüz ◽  
Gisa S. Boehden ◽  
Silke Süsse ◽  
Andreas Rimek ◽  
Ute Preuss ◽  
...  

ABSTRACT DNA double-strand breaks (DSBs) arise spontaneously after the conversion of DNA adducts or single-strand breaks by DNA repair or replication and can be introduced experimentally by expression of specific endonucleases. Correct repair of DSBs is central to the maintenance of genomic integrity in mammalian cells, since errors give rise to translocations, deletions, duplications, and expansions, which accelerate the multistep process of tumor progression. For p53 direct regulatory roles in homologous recombination (HR) and in non-homologous end joining (NHEJ) were postulated. To systematically analyze the involvement of p53 in DSB repair, we generated a fluorescence-based assay system with a series of episomal and chromosomally integrated substrates for I-SceI meganuclease-triggered repair. Our data indicate that human wild-type p53, produced either stably or transiently in a p53-negative background, inhibits HR between substrates for conservative HR (cHR) and for gene deletions. NHEJ via microhomologies flanking the I-SceI cleavage site was also downregulated after p53 expression. Interestingly, the p53-dependent downregulation of homology-directed repair was maximal during cHR between sequences with short homologies. Inhibition was minimal during recombination between substrates that support reporter gene reconstitution by HR and NHEJ. p53 with a hotspot mutation at codon 281, 273, 248, 175, or 143 was severely defective in regulating DSB repair (frequencies elevated up to 26-fold). For the transcriptional transactivation-inactive variant p53(138V) a defect became apparent with short homologies only. These results suggest that p53 plays a role in restraining DNA exchange between imperfectly homologous sequences and thereby in suppressing tumorigenic genome rearrangements.


Sign in / Sign up

Export Citation Format

Share Document