(Invited) 3D Integration in Silicon Technology

2019 ◽  
Vol 35 (2) ◽  
pp. 83-94 ◽  
Author(s):  
Mukta G. Farooq
2014 ◽  
Vol 2014 (DPC) ◽  
pp. 002057-002086 ◽  
Author(s):  
Yann Lamy ◽  
Haykel Ben Jamaa ◽  
Hughes Metras ◽  
Stéphane Bernabé ◽  
Sylvie Menezo ◽  
...  

The large internet companies' investments indicate an ongoing increase of data-based business volume through the next decades with the rise of the internet of things and the continuous growth of communication and data facilities. The two-figure yearly growth rate of exchanged data volume within data centers is challenging the actual short distance communication paradigms. With datacenter architectures getting larger and “flatter”, the availability of high bandwidth, low power and low cost optical links ranging from less than 1 meter to 1 kilometer is a key issue. It is therefore expected that today's 10 Gb/s transceiver data rate soon increase to 28Gb/s, 40 Gb/s and beyond. For such a channel bandwidth, the copper-based wires are no longer suitable in terms of cost, power and bandwidth density. Optical interconnects are expected to replace copper for short distances below 500 m and down to 1 m within servers and between servers of the same data center. They exhibit much higher scalability and flexibility in terms of bandwidth, reach and lower energy consumption down to 1 pJ/b and below. The integration of optical transceivers close to the computational logic is therefore becoming more and more attractive. The enabling technology for optical interconnect is silicon photonics which is maturing and leveraging the well-established knowledge coming from silicon technology. We today have a complete set of silicon photonics technology modules that cover passive components including multiplexers/demultiplexers, coupling functions, photodetectors, modulators and integrated laser sources. Given the constraints coming from the supply chain, we consider a heterogeneous integration of the photonics (PIC) and the electrical integrated circuits (EIC) within a single package, differentiating from a co-integration of both of them on a single die demonstrated in the past, which is not a viable nor scalable option from the economical point of view. Thereby we leverage our expertise in the 3D integration field, and we use a full set of mature technology modules including through-silicon vias (TSV), wafer thinning and micro-bumping. These modules have only been used in the past within electrical circuits, but their implantation in photonics chips has no showstoppers. The 3D integration enables a stacking of the electrical drivers in the EIC die on top of the photodiodes and modulators in the PIC die. The small micro-bump size reduces the parasitic capacitances and enables an optimized electro-optical co-design. The TSV enable the connection of the stack with the rest of the package and to the second-level interconnect with low inductive losses, thus boosting the system performance. The advanced 3D packaging technique also enables the alignment and attachment of the optical fibers using silicon micro-ferrules. Today's active alignment techniques for optical coupling are time-consuming and expensive, and not compatible with usual micro-electronics techniques. The ongoing development of silicon micro-ferrules with mechanical micro-bumps enables a compatible assembly of the optical plugs with the remaining system and a quick assembly process with standard pick-and-place equipment. The paper will introduce today's system demand in the data base market and its translation into technology requirements. It will then survey our silicon photonics technology modules and actual demonstrations. We will then introduce the packaging constraints and the impact of 3D integration on the system assembly. Finally, we will present our advances in terms of packaging of optical micro-connectors.


2003 ◽  
Vol 771 ◽  
Author(s):  
Amir Fardad ◽  
Wei Liang ◽  
Yadong Zhang ◽  
Bryson Case ◽  
Shibin Jiang ◽  
...  

AbstractFluorinated and photo-imageable precursors are synthesized through a Barbier-Grignard reaction for 1550-nm window. The precursors are used for the sol-gel process of integrated optic components for silica-on-silicon technology. Material compositions and process parameters are optimized to achieve internal absorptions >0.1 dB/cm and propagation losses of about 0.5 dB/cm at 1550 nm. Compact 1×16 Beam splitters are designed and fabricated which exhibit >0.3 dB power uniformity, >0.1 dB PDL and 1.5 dB coupling loss. By hybrid integration of the passive splitters and in-house fiber amplifiers, amplifying splitters are demonstrated at various signal intensities.


Author(s):  
A.J. Walton ◽  
J.T.M. Stevenson ◽  
I. Underwood ◽  
J.G. Terry ◽  
S. Smith ◽  
...  

Author(s):  
Tania Braun ◽  
Karl-Friedrich Becker ◽  
Michael Topper ◽  
Rolf Aschenbrenner ◽  
Martin Schneider-Ramelow
Keyword(s):  

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Jongwon Lee ◽  
Kilsun Roh ◽  
Sung-Kyu Lim ◽  
Youngsu Kim

This is the first demonstration of sidewall slope control of InP via holes with an etch depth of more than 10 μm for 3D integration. The process for the InP via holes utilizes a common SiO2 layer as an InP etch mask and conventional inductively coupled plasma (ICP) etcher operated at room temperature and simple gas mixtures of Cl2/Ar for InP dry etch. Sidewall slope of InP via holes is controlled within the range of 80 to 90 degrees by changing the ICP power in the ICP etcher and adopting a dry-etched SiO2 layer with a sidewall slope of 70 degrees. Furthermore, the sidewall slope control of the InP via holes in a wide range of 36 to 69 degrees is possible by changing the RF power in the etcher and introducing a wet-etched SiO2 layer with a small sidewall slope of 2 degrees; this wide slope control is due to the change of InP-to-SiO2 selectivity with RF power.


Sign in / Sign up

Export Citation Format

Share Document