scholarly journals Correlation between Contact Angle and Surface Roughness of Silicon Carbide Wafers

Author(s):  
Jung Gon Kim ◽  
Woo Sik Yoo ◽  
Woo Yeon Kim ◽  
Won Jae Lee

Abstract Two-inch diameter 6H-SiC wafers were sliced from a SiC ingot and the wafers were ground and polished using different diamond slurries (1 m and 0.1 m in particles size) to investigate their dependence on wetting on surface roughness (Ra) and polarity using precisely dispensed de-ionized (DI) water drops. The Ra of the Si-face (0001) SiC wafer, after grinding and polishing, was 5.6 and 1.6 nm, respectively, as measured by atomic force microscopy (AFM). For C-face (000-1) SiC wafers, the Ra was 7.2 nm after grinding and 3.3 nm after polishing. The average contact angle measurement of the SiC wafers after final polishing showed clear differences between surface polarity; the contact angle for the Si-face (0001) was ~7o greater than that for the C-face (000-1). The difference in contact angles between the Si-face (0001) and the C-face (000-1) tends to increase as the reduction of surface roughness approaches the final stage of polishing. The uniformity of Raman peak intensity in the folded transverse optical phonon band at ~780 cm-1 in scanned areas correlated well with the surface roughness measured by AFM. The contact angle measurement can be used as a convenient surface polarity and surface roughness testing technique for SiC wafers.

2013 ◽  
Vol 8 (4) ◽  
pp. 155892501300800 ◽  
Author(s):  
Yatinkumar Rane ◽  
Aleksey Altecor ◽  
Nelson S. Bell ◽  
Karen Lozano

Superhydrophobic materials combined with manufacturing processes that can increase surface roughness of the material, offer an opportunity to effectively control wetting properties. Rapid formation of Teflon® AF (TAF) fibrous mats with sub-micron fiber diameter using the Forcespinning™ technique is presented. The fiber formation technique is based on the use of centrifugal forces. SEM analysis shows uniform formation of TAF 1600 fibers with average diameter of 362±58nm. Contact angle measurement confirms the superhydrophobic nature of the mats with contact angles as high as 169° ± 3° and rolling angles of 2°. TAF 1600 mats were forcespun at a rate of 1gr/min. The relationship between the contact angle and hierarchical surface roughness of the TAF mat is also discussed. TAF yarns were also manufactured and characterized. Yarns with diameters of 156 microns withstood 17.5 MPa of engineering stress with a Young's modulus of 348 MPa in the elastic region and excellent thermal stability.


2020 ◽  
Vol 60 (1) ◽  
pp. 117
Author(s):  
Cut Aja Fauziah ◽  
Emad A. Al-Khdheeawi ◽  
Ahmed Barifcani ◽  
Stefan Iglauer

Wettability of rock–fluid systems is an important for controlling the carbon dioxide (CO2) movement and the capacities of CO2 geological trapping mechanisms. Although contact angle measurement is considered a potentially scalable parameter for evaluation of the wettability characteristics, there are still large uncertainties associated with the contact angle measurement for CO2–brine–rock systems. Thus, this study experimentally examined the wettability, before and after flooding, of two different samples of sandstone: Berea and Bandera grey sandstones. For both samples, several sets of flooding of brine (5 wt % NaCl + 1 wt % KCl in deionised water), CO2-saturated (live) brine and supercritical CO2 were performed. The contact angle measurements were conducted for the CO2–sandstone system at two different reservoir pressures (10 and 15 MPa) and at a reservoir temperature of 323 K. The results showed that both the advancing and receding contact angles of the sandstone samples after flooding were higher than that measured before flooding (i.e. after CO2 injection the sandstones became more CO2-wet). Moreover, the Bandera grey samples had higher contact angles than Berea sandstone. Thus, we conclude that CO2 flooding altered the sandstone wettability to be more CO2-wet, and Berea sandstone had a higher CO2 storage capacity than Bandera grey sandstone.


2020 ◽  
Vol 1010 ◽  
pp. 602-607
Author(s):  
Maizlinda Izwana Idris ◽  
Mohammed Firdaus Adzhari ◽  
Siti Natrah Abdul Bakil ◽  
Tee Chuan Lee ◽  
Mohamad Ali Selimin ◽  
...  

This work focuses on the fabrication of film based on natural biopolymers for wound healing application. Alginate and chitosan were choosen because of their oustanding properties such as biocompatible, hydrophilic and non-toxic. Earlier, the biopolymer film was fabricated by using alginate 1% wt and chitosan 1% wt. solutions at volume ratios of 99:1 and 97:3. Next, the biopolymer film solution was cross-linked with 1M CaCl2.2H2O for two hours and later dried for 24 hours at room temperature. Then, the surface properties of the prepared biopolymer films were characterised via Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM) and contact angle measurement. It was observed that the surface of the biopolymer film became rougher as the volume of the chitosan increases. This condition was confirmed with average surface roughness, RA for biopolymer film with ratio of 97:3 resulted in higher values. Also it was found that the surface of biopolymer films were hydrophilic after the contact angle was less than 90°. This can be concluded that the biopolymer based on alginate/chitosan is a promising candidate for wound healing materials particularly with good surface properties for faster healing process at the wound areas.


2021 ◽  
Vol 8 (2) ◽  
pp. 106
Author(s):  
Adella Syvia Maharani ◽  
Pramudya Aditama ◽  
Murti Indrastuti ◽  
Suparyono Saleh

ABSTRACTBackground: Acrylic resin artificial teeth is easily to have bacterial adhesion. It is necessary to perform a treatment on that surface, in order to reduce bacterial adhesion. This study aimed to reveal the effect of silica coating in acrylic resin artificial teeth on surface roughness, contact angle measurement, and the growth of Streptococcus mutans.Method: The study was conducted on two groups (n=16) of disk-shaped acrylic resin artificial teeth with a diameter of 10 mm and thickness of 2 mm. A 2% silica coating material was obtained by diluting 2 g silica nanoparticles on 100 ml of ethanol. Surface roughness, contact angle measurement, and the growth of Streptococcus mutans was measured using surface roughness measuring instrument, camera digital, and colony counter. The data obtained were then analyzed using T-test (p<0.05).Result: The results showed that the surface roughness and contact angle measurement in group I (0.29±0.08 μm); (79,49º ± 10,88º) was higher than group II (0.17±0.05 μm); (34,77º±0,05º). The growth of Streptococcus mutans in group I was also higher (32.28±3.75 CFU/ml) than group II (24.83±3.47 CFU/ml). Conclusion: The study concluded that there is an effect of silica coating on surface roughness, contact angle measurement, and the growth of Streptococcus mutans in acrylic resin artificial teeth.


2013 ◽  
Vol 446-447 ◽  
pp. 360-365
Author(s):  
Pusita Kuchaiyaphum ◽  
Takeshi Yamauchi ◽  
Ruangsri Watanesk ◽  
Surasak Watanesk

Eco-friendly films have been prepared using various biopolymers and their properties have been improved in order to meet the requirements for appropriate applications. However, the frequently encountered weakness of the properties of most biopolymer film is its water solubility. In this study, the polyvinyl alcohol/rice starch/silk fibroin (PVA/RS/SF) films were modified by the addition of glycerol aiming to increase the hydrophobicity of the films. Some properties of the modified films including water contact angle, degree of swelling and water solubility were compared with the unmodified PVA/RS/SF film. Results from the contact angle measurement showed that the films with glycerol could be transformed to be hydrophobic after soaking in ethanol medium. The increase in soaking time tends to increase the hydrophobicity of the films. However, at about 60 min soaking, the water contact angles on the films were quite constant with the values of about 107.9±5.2º comparing with 65.3±2.4º of the ethanol-untreated PVA/RS/SF films. In addition, the ethanol-treated glycerol-modified films also show higher degree of swelling with constant solubility and better mechanical properties.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 93
Author(s):  
Catrin Bannewitz ◽  
Tim Lenz-Habijan ◽  
Jonathan Lentz ◽  
Marcus Peters ◽  
Volker Trösken ◽  
...  

Bare metal endovascular implants pose a significant risk of causing thrombogenic complications. Antithrombogenic surface modifications, such as phenox’s “Hydrophilic Polymer Coating” (pHPC), which was originally developed for NiTi implants, decrease the thrombogenicity of metal surfaces. In this study, the transferability of pHPC onto biomedical CoCr-based alloys is examined. Coated surfaces were characterized via contact-angle measurement and atomic force microscopy. The equivalence of the antithrombogenic effect in contact with whole human blood was demonstrated in vitro for CoCr plates compared to NiTi plates on a platform shaker and for braided devices in a Chandler loop. Platelet adhesion was assessed via scanning electron microscopy and fluorescence microscopy. The coating efficiency of pHPC on CoCr plates was confirmed by a reduction of the contact angle from 84.4° ± 5.1° to 36.2° ± 5.2°. The surface roughness was not affected by the application of pHPC. Platelet adhesion was significantly reduced on pHPC-coated specimens. The platelet covered area was reduced by 85% for coated CoCr plates compared to uncoated samples. Uncoated braided devices were completely covered by platelets, while on the pHPC-coated samples, very few platelets were visible. In conclusion, the antithrombogenic effect of pHPC coating can be successfully applied on CoCr plates as well as stent-like CoCr braids.


2021 ◽  
Vol 11 (4) ◽  
pp. 1747
Author(s):  
Su Hyun Choi ◽  
Do Hyeog Kim ◽  
Seonjun Kim ◽  
Woo Young Kim ◽  
Seok Kim ◽  
...  

Functional films with hydrophobic, oleophobic, anti-fouling, anti-icing, anti-bacterial and low reflectance properties can be produced by patterning nano- or micro-structures on films via nano imprint lithography. Here, an omni-phobic surface showing both hydrophobicity and oleophobicity was obtained without chemical surface treatment by increasing the surface roughness and deforming the pattern morphology using only nano imprint lithography and the oxygen-inhibited curing properties of polyurethane acrylate (PUA) resin. A tulip-shaped pattern imprinting process was designed in which microscale patterns were fabricated using a porous polydimethylsiloxane (PDMS) mold with high oxygen transmission. During ultraviolet (UV) curing, a curing inhibiting layer was formed by reaction with oxygen. Next, a PDMS pad was used for the pressurized curing of the curing inhibition layer to modify the micro scale structures. Finally, final curing of the deformed pattern was performed using ultra high-power UV light. The deformation of the pattern into tulip-like shapes with increased surface roughness was confirmed by microscopy, and contact angle measurement was performed to confirm omni-phobicity. The final cured imprinted samples showed water and oil contact angles reaching 169.2° and 115°, respectively; thus, the omni-phobic surface could be demonstrated by a tulip-shaped pattern imprinting process.


2014 ◽  
Vol 3 (2) ◽  
Author(s):  
H. D. K. Yulianto dan M. Rinastiti

The capability of initial microbial adhesion to dental restorative composites surface is influenced by the surface wettability of the materials. The common method to evaluate surface wettability of materials is contact angle measurement. The existing conventional method to measure contact angle is by means of a contact angle (CA)-Goniometer device, which is less practically applicable in clinical circumstances. Therefore, a more practical and applicable method is needed to measure contact angle in clinical circumstances. This research was performed to compare between contact angles measured by means of a CA-Goniometer device and a new practical method of drop profile image analysis. In addition, since there were two different formulas that can be used to calculate contact angle value from a drop profile image, then we also need to evaluate which formula is more reliable to be used. Tests were carried out using three composite discs (Clearfill-Kuraray Medical, Inc.) sample and deionised water for different measurement procedures. One drop of 3µl liquid was dropped onto the surface of the composite discs, and the drop profile image was captured by means of a customized home-made device connected to a digital camera. Two different formulas were used to calculate the contact angle value from the drop profile image, namely the “linier gradient equation” and the “tangential line”. The contact angle values obtained from the two different formulas were compared with the value obtained from the conventional method descriptively. Tests were carried out using three composite discs (Clearfill-Kuraray Medical, Inc.) sample and deionised water for different measurement procedures. One drop of 3µl liquid was dropped onto the surface of the composite discs, and the drop profile image was captured by means of a customized home-made device connected to a digital camera. Two different formulas were used to calculate the contact angle value from the drop profile image, namely the “linier gradient equation” and the “tangential line”. The contact angle values obtained from the two different formulas were compared with the value obtained from the conventional method descriptively. The differences in percentage between the contact angle value calculated by the “linier gradient equation” and “tangential line” formulas, and those calculated by means of the CA-Goniometer are 20,56% and 3,51%, respectively. It is obviously demonstrated that the value obtained by the “tangential line” formula has a smaller difference compared to those obtained by the “linier equation gradient” formula. Among the two different formulas, it is confirmed that the contact angle value calculated with the “tangential line” formula has closer similarity with the value obtained from the CA-Goniometer. This result confirms that the new practical method of drop profile image analysis is promising for measuring contact angle values in clinical circumstances. Related to the drop profile image analysis, the “tangential line” formula is more accurate compared to the “linier gradient equation” formula.


Sign in / Sign up

Export Citation Format

Share Document