Multi-Bit Non-Volatile Organic Transistor-Based Memory Using Lithium-Ion-Encapsulated Fullerene As a Charge Trapping Layer

2017 ◽  
Vol 45 ◽  
pp. 234-239 ◽  
Author(s):  
Cuong Manh Tran ◽  
Heisuke Sakai ◽  
Yuki Kawashima ◽  
Kei Ohkubo ◽  
Shunichi Fukuzumi ◽  
...  

2020 ◽  
Vol 41 (6) ◽  
pp. 852-855
Author(s):  
Priyanka Kumari ◽  
Jieun Ko ◽  
V. Ramgopal Rao ◽  
Subodh Mhaisalkar ◽  
Wei Lin Leong

2014 ◽  
Vol 2 (21) ◽  
pp. 4233-4238 ◽  
Author(s):  
Jiaqing Zhuang ◽  
Su-Ting Han ◽  
Ye Zhou ◽  
V. A. L. Roy

Hafnium dioxide (HfO2) film prepared by the sol–gel technique has been used as a charge trapping layer in organic flash memory.


2021 ◽  
Author(s):  
Cong Shen ◽  
Xu Gao ◽  
Cheng Chen ◽  
Shan Ren ◽  
Jianlong Xu ◽  
...  

Abstract Artificial synapses that integrate functions of sensing, memory and computing are highly desired for developing brain-inspired neuromorphic hardware. In this work, an optoelectronic synapse based on the ZnO nanowire (NW) transistor is achieved, which can be used to emulate both the short-term and long-term synaptic plasticity. Synaptic potentiation is present when the device is stimulated by light pulses, arising from the light-induced O2 desorption and the persistent photoconductivity behavior of the ZnO NW. On the other hand, synaptic depression occurs when the device is stimulated by electrical pulses in dark, which is realized by introducing a charge trapping layer in the gate dielectric to trap carriers. Simulation of a neural network utilizing the ZnO NW synapses is carried out, demonstrating a high recognition accuracy over 90% after only 20 training epochs for recognizing the Modified National Institute of Standards and Technology (MNIST) digits. The present nanoscale optoelectronic synapse has great potential in the development of neuromorphic visual systems.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 489 ◽  
Author(s):  
Hogyoung Kim ◽  
Seok Choi ◽  
Byung Joon Choi

Atomic layer deposited AlGaN with different AlN and GaN pulse ratios (2:1, 1:1, and 1:2) was used to prepare AlGaN/GaN Schottky diodes, and their current transport mechanisms were investigated using current–voltage (I–V) and capacitance–voltage (C–V) measurements. Under low reverse bias condition, the sample with the pulse ratio of 2:1 was explained by Poole–Frenkel emission and the negative temperature dependence for the sample with the pulse ratio of 1:2 was associated with the acceptor levels in the AlGaN layer. Fast interface traps at 0.24–0.29 eV were observed for the samples with the pulse ratios of 1:1 and 1:2, whereas bulk traps at ~0.34 eV were observed for the sample with the pulse ratio of 2:1. Higher trap densities were obtained from the C–V hysteresis measurements when the pulse ratios were 1:1 and 1:2, indicating the presence of a charge trapping interfacial layer. According to the X-ray photoelectron spectroscopy spectra, the pulse ratio of 2:1 was found to have less oxygen-related defects in the AlGaN layer.


2018 ◽  
Vol 5 (12) ◽  
pp. 1800747 ◽  
Author(s):  
Yang Yu ◽  
Lin-Yi Bian ◽  
Jian-Guo Chen ◽  
Qi-Hao Ma ◽  
Yin-Xiang Li ◽  
...  

2019 ◽  
Vol 5 (7) ◽  
pp. eaaw1879 ◽  
Author(s):  
Minsu Gu ◽  
Woo-Jin Song ◽  
Jaehyung Hong ◽  
Sung Youb Kim ◽  
Tae Joo Shin ◽  
...  

Stretchable conductors are essential components in next-generation deformable and wearable electronic devices. The ability of stretchable conductors to achieve sufficient electrical conductivity, however, remains limited under high strain, which is particularly detrimental for charge storage devices. In this study, we present stretchable conductors made from multiple layers of gradient assembled polyurethane (GAP) comprising gold nanoparticles capable of self-assembly under strain. Stratified layering affords control over the composite internal architecture at multiple scales, leading to metallic conductivity in both the lateral and transversal directions under strains of as high as 300%. The unique combination of the electrical and mechanical properties of GAP electrodes enables the development of a stretchable lithium-ion battery with a charge-discharge rate capability of 100 mAh g−1 at a current density of 0.5 A g−1 and remarkable cycle retention of 96% after 1000 cycles. The hierarchical GAP nanocomposites afford rapid fabrication of advanced charge storage devices.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
W. J. Liu ◽  
L. Chen ◽  
P. Zhou ◽  
Q. Q. Sun ◽  
H. L. Lu ◽  
...  

We demonstrated a flash memory device with chemical-vapor-deposited graphene as a charge trapping layer. It was found that the average RMS roughness of block oxide on graphene storage layer can be significantly reduced from 5.9 nm to 0.5 nm by inserting a seed metal layer, which was verified by AFM measurements. The memory window is 5.6 V for a dual sweep of ±12 V at room temperature. Moreover, a reduced hysteresis at the low temperature was observed, indicative of water molecules or −OH groups between graphene and dielectric playing an important role in memory windows.


Sign in / Sign up

Export Citation Format

Share Document